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Abstract

In many Lagrangian field theories, there is a Poisson bracket on the space of local functionals.
One may identify the fields of such theories as sections of a vector bundle. It is known that the
Poisson bracket induces an sh-Lie structure on the graded space of horizontal forms on the jet bundle
of the relevant vector bundle. We consider those automorphisms of the vector bundle which induce
mappings on the space of functionals preserving the Poisson bracket and refer to such automorphisms
as canonical automorphisms.

We determine how such automorphisms relate to the corresponding sh-Lie structure. If a Lie group
acts on the bundle via canonical automorphisms, there are induced actions on the space of local
functionals and consequently on the corresponding sh-Lie algebra. We determine conditions under
which the sh-Lie structure induces an sh-Lie structure on a corresponding reduced space where the
reduction is determined by the action of the group. These results are not directly a consequence of
the corresponding theorems on Poisson manifolds as none of the algebraic structures are Poisson
algebras.
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1. Introduction

The dynamical “equations of motion” of a Lagrangian field theory are usually derived
from a variational principle of “least action”. Given a LagrangianL, the action ofL is the
functionalSdefined by

S(φ) =
∫
M

L((jnφ)(x))VolM

whereM is a manifold,φ may be either a vector-valued function or a section of a vector
bundleE overM, andL is a real-valued function on some finite jet bundleJnE. More
generally, ifπ : E → M is a vector bundle andπ∞ : J∞E → M is the corresponding
prolongation ofE, then a smooth functionP : J∞E → R is called alocal functiononE
provided that for some positive integern there is a smooth functionPn : JnE → R such that
P = Pn ◦ πn whereπn is the projection ofJ∞E ontoJnE. Thus all Lagrangians are local
functions on an appropriate bundle. To say thatP is alocal functionalonEmeans thatP is
a mapping from a subspace of compactly supported sections ofE → M intoR such that

P(φ) =
∫
M

(P ◦ j∞φ)(x)VolM

for some local functionP and for all such sectionsφ of E.
In imitation of Hamiltonian mechanics one postulates the existence of a “Poisson bracket”

on the spaceF of local functionals and then uses it to develop a Hamiltonian theory of fields.
This bracket is assumed to satisfy the Jacobi identity and so defines a Lie algebra structure
on the spaceF. On the other hand there is no obvious commutative multiplication of such
functionals and consequentlyF is not a Poisson algebra. This is such a well-known develop-
ment that we may refer to standard monographs on the subject. In particular we call attention
to [7] and[15] for classical expositions and to[8] for a quantum field theoretic development.

It was shown in[2] that a Poisson bracket on the space of local functionals induces
what is known as sh-Lie structure on a part of the variational bicomplex which we refer
to as the “de Rham complex” onJ∞E. This sh-Lie structure is given by three mappings
l1, l2, l3 defined on this complex. The mappingl2 is skew-symmetric and bilinear, and it
may be regarded as defining a “bracket” but one which generally fails to satisfy the Jacobi
identity. In factl2 satisfies the Jacobi identity ifl3 = 0. In a sense this sh-Lie structure is an
anti-derivative of the Poisson bracket.

In the present paper we intend to develop ideas related to canonical transformations
of these structures. Recall that ifM is a Poisson manifold one says that a mapping from
M to itself is a canonical transformation if and only if it preserves the Poisson bracket
defined onC∞(M) [14]. Moreover if one has a Lie groupGwhich acts onM via canonical
transformations, one obtains a reduction of the brackets to a reduced spaceM/G in the
presence of appropriate hypothesis. The space of local functionals is not a Poisson algebra
and so there is no underlying Poisson manifold. The bracketl2 is defined on the space of
“top” forms of the “de Rham complex” which can be identified with the space of local
functions onJ∞E. This space is a commutative algebra under pointwise multiplication,
butl2 does not satisfy the Jacobi identity and so again one does not have a Poisson manifold.
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We say that an automorphism of the bundleE is canonicalprovided that its induced
mapping on the space of local functionals,F, preserves the Poisson bracket. We then
determine how such automorphisms relate to the sh-Lie structure onJ∞E. Finally we
determine conditions under which there exists an sh-Lie structure on a reduced graded
space in the presence of a Lie group which acts onE via canonical automorphisms.

We apply these ideas to a Poisson sigma model. Poisson sigma models have proven to
be of interest in many areas of physics. In particular they have been used to describe certain
two-dimensional theories of gravity by Ikeda[9], topological field theories by Schaller and
Strobl [16], and to obtain a path integral proof of Kontsevich’s theorem on deformation
quantization by Cattaneo and Felder[6]. These are but a sample of the many authors who
have made important contributions relating to these model theories.

After presenting some background material inSection 2, we find conditions for the
inducedautomorphisms on the space of local functionals to becanonical. In Section 3we
show how these induced canonical transformations relate to the sh-Lie structure maps. In
Section 4we assume that one has a Lie group acting by canonical transformations on the
space of functionals. We then determine how this action relates to the sh-Lie structure and
find conditions for the existence of an (induced) sh-Lie structure on a corresponding reduced
space. There is a brief discussion of functional invariance inSection 5. In Section 6we show
how our formalism applies to a specific Poisson sigma model due initially to Ikeda.

Clearly the questions dealt with in this paper relate more to the mathematical structures
induced by a Poisson bracket on the space of functionals rather than to specific methods of
solving dynamical field equations. Moreover we have restricted our attention to a class of
theories in which the Poisson bracket is induced by a tensorω which is scalar-valued rather
than differential-operator valued. Once we understand this restricted case more fully we hope
to extend these results to a larger class of theories for whichω is differential-operator valued.

Eventually we also intend to expand our scope to include fermionic theories such as
those in[8]. Indeed, the sh-Lie formalism is particularly well-suited to interact with super-
field theories such as those needed to describe the Batalin-Vilkovisky approach to BRST
cohomology. Once anti-fields are introduced, our vector bundleE can be modified in such
a manner that both the bosonic fields studied here and the fermionic (anti-)fields become
sections of the new bundle. In this context the Batalin-Vilkovisky anti-bracket is none other
than our Poisson bracket of local functionals with appropriate grading. Thus we expect the
modifications of this work to the latter case to be minimal. In fact this work is motivated by
both the classical field theories such as those described in[15] and the super-fields developed
in [8]. This approach has proven its worth in investigations such as those found in[3] and[4].

2. Bundle automorphisms preserving the Poisson structure on the space of
functionals

2.1. Background material

In this section we introduce some of the terminology and concepts that are used in this
work, in addition to some of the simpler results that will be needed. Our exposition and
notation closely follows that in[2]. First letE → M be a vector bundle where the base
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spaceM is ann-dimensional manifold and letJ∞E be the infinite jet bundle ofE. The
restriction of the infinite jet bundle over an appropriate open setU ⊂ M is trivial with fiber
an infinite dimensional vector spaceV∞. The bundle

π∞ : J∞EU = U × V∞ → U

then has induced coordinates given by

(xi, ua, uai , u
a
i1i2

, . . .).

We use multi-index notation and the summation convention throughout the paper. Ifj∞φ

is the section ofJ∞E induced by a sectionφ of the bundleE, thenua ◦ j∞φ = ua ◦ φ and

uaI ◦ j∞φ = (∂i1∂i2, . . . , ∂ir )(u
a ◦ j∞φ)

wherer is the order of the symmetric multi-indexI = {i1, i2, . . . , ir}, with the convention
that, forr = 0, there are no derivatives. For more details see[1] and[13].

LetLocE denote the algebra of local functions where a local function onJ∞E is defined
to be the pull-back of a smooth function on some finite jet bundleJpE via the projection from
J∞E toJpE. LetLoc0

E denote the subalgebra ofLocE such thatP ∈ Loc0
E iff ( j∞φ)∗P has

compact support for allφ ∈ ΓE with compact support, whereΓE denotes the set of sections
of the bundleE → M. The de Rham complex of differential formsΩ∗(J∞E, d) onJ∞E

possesses a differential ideal, the idealC of contact formsθ which satisfy (j∞φ)∗θ = 0
for all sectionsφ with compact support. This ideal is generated by the contact one-forms,
which in local coordinates assume the formθaJ = duaJ − uaiJdxi.

Using the contact forms, we see that the complexΩ∗(J∞E, d) splits as a bicomplex
Ωr,s(J∞E) (though the finite level complexesΩ∗(JpE) do not), whereΩr,s(J∞E) denotes
the space of differential forms onJ∞E with r horizontal components ands vertical com-
ponents. The bigrading is described by writing a differentialp-form α = αJIA(θAJ ∧ dxI ) as
an element ofΩr,s(J∞E), with p = r + s, and

dxI = dxi1 ∧ . . . ∧ dxir , θAJ = θ
a1
J1

∧ . . . ∧ θ
as
Js
.

Now let C0 denote the set of contact one-forms oforder zero. Contact one-forms of
order zero satisfy (j1φ)∗(θ) = 0 and, in local coordinates, they assume the formθa =
dua − uai dx

i. Notice that bothC0 andΩn,1 = Ωn,1(J∞E) are modules overLocE. Let

Ω
n,1
0 denote the subspace ofΩn,1 which is locally generated by the forms{(θa ∧ dnx)}

overLocE. We assume the existence of a mapping,ω, from Ω
n,1
0 × Ω

n,1
0 to LocE, such

thatω is a skew-symmetric module homomorphism in each variable separately. In local
coordinates letωab = ω(θa ∧ ν, θb ∧ ν), whereν is a volume element onM (notice that in
local coordinatesν takes the formν = fdnx = fdx1 ∧ dx2 ∧ . . . ∧ dxn for some function
f : U → R andU is a subset ofM on which thexi’s are defined).

Wewill assume throughout this paper thatω satisfies theconditions thatmakeourPoisson
bracket, which will be defined soon, satisfy the Jacobi identity.
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Define the operatorDi (total derivative) byDi = ∂/∂xi + uaiJ (∂/∂uaJ ) (recall we assume
the summation convention, i.e., the sum is over alla and multi-indexJ), and recall that the
Euler-Lagrange operator mapsΩn,0(J∞E) intoΩn,1(J∞E) and is defined by

E(Pν) = Ea(P)(θa ∧ ν)

whereP ∈ LocE, ν is a volume form on the base manifoldM, and the componentsEa(P)
are given by

Ea(P) = (−D)I

(
∂P

∂uaI

)
.

For simplicity of notation we may useE(P) for E(Pν). We will also useD̃i for ∂/∂x̃i +
ũaiJ (∂/∂ũaJ ) and Ẽa(P) for (−D̃)I (∂P/∂ũaI ) so thatE(P) = Ẽa(P)(θ̃a ∧ ν) in the (x̃µ, ũa)
coordinate system.

Let Ωk,l
c (J∞E) be the subspace ofΩk,l(J∞E), for {k, l} �= {n,0}, such thatα ∈

Ωk,l
c (J∞E) iff ( j∞φ)∗α has compact support for allφ ∈ ΓE with compact support, and

letΩn,0
c (J∞E) be the subspace ofΩn,0(J∞E) such thatPν ∈ Ωn,0

c (J∞E) iff ( j∞φ)∗(Pν)
and (j∞φ)∗Ea(P) have compact support for allφ ∈ ΓE with compact support and for all
a. We are interested in the complex

0 → Ω0,0
c (J∞E) → Ω1,0

c (J∞E) → · · · → Ωn−1,0
c (J∞E) → Ωn,0

c (J∞E)

with the differential dH defined by dH = dxiDi, i.e., if α = αIdxI then dHα = DiαIdxi ∧
dxI . Notice that this complex is exact whenever the base manifoldM is contractible (e.g.
see[5]).

Now letF be the space of functionals whereP ∈ F iff P = ∫
M
Pν for someP ∈ Loc0

E,
and define a Poisson bracket onF by

{P,Q}(φ) =
∫
M

[ω(E(P),E(Q)) ◦ jφ]ν,

whereφ ∈ ΓE, ν is a volume form onM,P = ∫
M
Pν,Q = ∫

M
Qν, andP,Q ∈ Loc0

E.
Using local coordinates (xµ, uaI ) onJ∞E, observe that forφ ∈ ΓE such that the support of
φ lies in the domainΩ of some chartx of M, one has

{P,Q}(φ) =
∫
x(Ω)

([ωabEa(P)Eb(Q)] ◦ jφ ◦ x−1)(x−1)∗(ν)

wherex−1 is the inverse ofx = (xµ).
We assume thatω satisfies the necessary conditions for the above bracket to satisfy the

Jacobi identity, e.g. see[15]. Notice that it follows from the identity (7.11) of[15] that the
bracket satisfies the Jacobi identity if the skew-symmetric matrix{ωab} is a Poisson tensor
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in the sense that:

ωcd ∂ω
ab

∂ud
+ ωad ∂ω

bc

∂ud
+ ωbd ∂ω

ca

∂ud
= 0,

where{ua} are coordinates on the fiber of the trivial bundle E. This condition is met in the
case of the Poisson sigma model, which we include later in the paper, and more generally
for any trivial vector bundle with a Poisson structure on its fibers.

The functionsP andQ in our definition of the Poisson bracket of local functionals
are representatives ofP andQ respectively, since generally these are not unique. In fact
F � Hn

c (J∞E), whereHn
c (J∞E) = Ωn,0

c (J∞E)/(imdH
⋂

Ωn,0
c (J∞E)) and imdH is the

image of the differential dH .
Letψ : E → E be an automorphism, sending fibers to fibers, and letψM : M → M be

the induced diffeomorphism ofM. Notice thatψ induces an automorphismjψ : J∞E →
J∞E where

(jψ)((j∞φ)(p)) = j(ψ ◦ φ ◦ ψ−1
M )(ψM(p)),

for all φ ∈ ΓE and allp in the domain ofφ. In these coordinates the independent variables
transform via ˜xµ = ψ

µ
M(xν). Local coordinate representatives ofψM andjψ may be de-

scribed in terms of charts (Ω, x) and (Ω̃, x̃) ofM, and induced charts ((π∞)−1(Ω), (xµ, uaI ))
and ((π∞)−1(Ω̃), (x̃µ, ũaI )) of J∞E.

Remark. In Section 4we will consider (left) Lie group actions onE and their induced
(left) actions onJ∞E. Such actions are defined by homomorphisms from the group into
the group of automorphisms ofE.

Definition. ω : Ωn,1
0 × Ω

n,1
0 → LocE is covariantwith respect to an automorphismψ :

E → E of the above form iff

ω((jψ)∗θ, (jψ)∗θ′) = (detψM)(jψ)∗(ω(θ, θ′)),

for all θ, θ′ ∈ Ω
n,1
0 (J∞E).

Observe that

(jψ)∗θ̃a = (jψ)∗(dũa − ũaµdx̃µ)
= d(ũa ◦ jψ) − (ũaµ ◦ jψ)d(x̃µ ◦ jψ)

= ∂ψa
E

∂xν
dxν + ∂ψa

E

∂ub
dub −

(
∂ψa

E

∂xν
+ ∂ψa

E

∂ub
ubν

)
(J−1)νµ

∂x̃µ ◦ jψ

∂xλ
dxλ

= ∂ψa
E

∂xν
dxν + ∂ψa

E

∂ub
dub − ∂ψa

E

∂xν
dxν − ∂ψa

E

∂ub
ubνdx

ν

= ∂ψa
E

∂ub
(dub − ubνdx

ν)

= ∂ψa
E

∂ub
θb



S. Al-Ashhab, R. Fulp / Journal of Geometry and Physics 53 (2005) 365–391 371

where we have assumed thatψa
E = ũa ◦ ψ andJ is the Jacobian matrix of the transformation

x̃ν = ψν
M(xµ).

Lemma 2.1. The following are equivalent

(i) ω((jψ)∗θ, (jψ)∗θ′) = (detψM)(jψ)∗(ω(θ, θ′)), for all θ, θ′ ∈ Ω
n,1
0 (J∞E).

(ii) ω̃ab ◦ jψ = (detψM)ωcd ∂ψa
E

∂uc
∂ψb

E

∂ud
.

Proof. Notice that

detψM(jψ)∗(ω(E(P),E(Q))) = (detψM)ω(E(P),E(Q)) ◦ jψ

= detψM [ω(θ̃a ∧ ν, θ̃b ∧ ν)Ẽa(P)Ẽb(Q)] ◦ jψ

= detψM(ω̃ab ◦ jψ)(Ẽa(P) ◦ jψ)(Ẽb(Q) ◦ jψ)

and that

(jψ)∗(E(P)) = (jψ)∗(Ẽa(P)(θ̃a ∧ ν))

= (Ẽa(P) ◦ jψ)
∂ψa

E

∂uc
(detψM)(θc ∧ ν).

Now

ω((jψ)∗E(P), (jψ)∗E(Q)) = (detψM)2
∂ψa

E

∂uc

∂ψb
E

∂ud
(Ẽa(P) ◦ jψ)(Ẽb(Q) ◦ jψ)

×ω(θc ∧ ν, θd ∧ ν)

= (detψM)2
∂ψa

E

∂uc

∂ψb
E

∂ud
ωcd(Ẽa(P) ◦ jψ)(Ẽb(Q) ◦ jψ).

Henceω((jψ)∗E(P), (jψ)∗E(Q)) = (detψM)(jψ)∗(ω(E(P),E(Q))) for all P,Q in LocE
iff ( ω̃ab ◦ jψ) = (detψM)∂ψa

E/∂u
c × ∂ψb

E/∂u
d × ωcd .

2.2. Automorphisms preserving the Poisson structure

LetL : J∞E → R be a Lagrangian inLocE (generally we will assume that any element
of LocE is a Lagrangian). Let̂L = L ◦ (xµ, uaI )

−1 and letL̃ = L ◦ (x̃µ, ũaI )
−1. Then, in

local coordinates,̃L is related toL̂ by the equation

(L̃ ◦ jψ̄)det(J) = L̂,

wherejψ̄ = (x̃ν, ũbK) ◦ (xµ, uaI )
−1 andJ is the Jacobian matrix of the transformationψM =

x̃ν ◦ (xµ)−1. With abuse of notation we may assume coordinates and charts are the same and
write x̃ν = ψM(xµ). For simplicity, we have also assumed thatψM is orientation-preserving.
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In this case the functional

L̃ =
∫
Ω̃

L̃dnx̃

is the transformed form of the functional

L̂ =
∫
Ω

L̂dnx

whereL̂ andL̃ are related as above,Ω is the domain of integration and̃Ω is the transformed
domain underjψ̄ (see[15], pp. 249–250). Notice that both of these are local coordinate
expressions of the equationL = ∫

M
Lν, for appropriately restricted charts. Now suppose

thatψ is an automorphism ofE, jψ its induced automorphism onJ∞E, andψM its in-
duced (orientation-preserving) diffeomorphism onM. Also suppose that̂L andL̃ are two
Lagrangians related by the equation (L̃ ◦ jψ)det(ψM) = L̂. We have:

Lemma 2.2. Let P be a Lagrangian as above, then

Ea((P ◦ jψ)det(ψM)) = det(ψM)
∂ψc

E

∂ua
(Ẽc(P) ◦ jψ). (2.1)

Proof. First notice thatEua (L̂) = det(ψM)∂ψc
E/∂u

a(Eũc (L̃) ◦ jψ) (see[15], p. 250). But
(L̃ ◦ jψ)det(ψM) = L̂. The identity (2.1) follows by lettingP = L̃. Notice that this is jus-
tified sinceL̃ is arbitrary in the sense that given anyL′ there exists an̂L derived from a
LagrangianL as above such that (L′ ◦ jψ)det(ψM) = L̂ sincejψ is an automorphism.

Let ψ̂ denote the mapping representing the induced action of the automorphism on
sections ofE, i.e.,ψ̂ : ΓE → ΓE whereψ̂(φ) = ψ ◦ φ ◦ ψ−1

M andφ is a section ofE. This
induces a mapping on the space of local functionals given by

(P ◦ ψ̂)(φ) = P(ψ ◦ φ ◦ ψ−1
M )

=
∫
M

[P ◦ j(ψ ◦ φ ◦ ψ−1
M )]ν

=
∫
M

[P ◦ j(ψ ◦ jφ ◦ ψ−1
M )]ν

=
∫
M

[P ◦ jψ ◦ jφ](detψM)ν,

where

P(φ) =
∫
M

(P ◦ jφ)ν,

andφ is a section ofE.
We find conditions on those automorphisms of the space of functionals under which the

Poisson structure is preserved.
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Recall that{P,Q} = ∫
M
ω(E(P),E(Q))ν, and hence

{P,Q}(φ) =
∫
M

[ω(E(P),E(Q)) ◦ jφ]ν. (2.2)

Now

{P ◦ ψ̂,Q ◦ ψ̂}(φ) = ({P,Q} ◦ ψ̂)(φ) (2.3)

is equivalent to∫
M

[ω(E((P ◦ jψ)detψM),E((Q ◦ jψ)detψM)) ◦ jφ]ν

=
∫
M

[(ω(E(P),E(Q)) ◦ jψ ◦ jφ)detψM ]ν,

but since this holds for all sectionsφ of E it is equivalent to

ω(E((P ◦ jψ)detψM),E((Q ◦ jψ)detψM)) = (ω(E(P),E(Q)) ◦ jψ)detψM

up to adivergence. The last equation is equivalent to

ωabEb((Q ◦ jψ)detψM)Ea((P ◦ jψ)detψM) = ([ω̃abẼb(Q)Ẽa(P)] ◦ jψ)detψM

up to a divergence, or (Lemma 2.2)

ωab(detψM)2
∂ψd

E

∂ub

∂ψc
E

∂ua
(Ẽd(Q) ◦ jψ)(Ẽc(P) ◦ jψ)

= (ω̃ab ◦ jψ)(Ẽb(Q) ◦ jψ)(Ẽa(P) ◦ jψ)(detψM)

up to a divergence. Finally, since the last equation is true for allP andQ it is equivalent to

ω̃ab ◦ jψ = (detψM)ωcd ∂ψ
a
E

∂uc

∂ψb
E

∂ud

which is equivalent to the covariance ofω. (Notice that if the last equality does not hold
then by some choice ofP andQ the equations above will not hold up to a divergence.) We
have established the following:

Theorem 2.3. Letψ : E → E be an automorphism of E sending fibers to fibers, and let
Ψ : F→ F be the inducedmapping defined byΨ (P) = P ◦ ψ̂ (noting thatP ◦ ψ̂ is defined
as above) wherêψ : ΓE → ΓE is given byψ̂(φ) = ψ ◦ φ ◦ ψ−1

M . ThenΨ is canonical in
the sense that

{Ψ (P), Ψ (Q)} = Ψ ({P,Q})

for all P,Q ∈ F iff ω is covariant with respect toψ.
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Definition. An automorphismψ ofE iscanonicalprovided the induced mappingΨ : F −→
F is canonical (in the sense of the preceding theorem).

Example.ConsiderM = R, E = R × R2, and let

ω =
(

0 1
−1 0

)
.

Consider the actionψg : E → E defined byψg(x, u1, u2) = (x, g · (u1, u2)) for some
g ∈ SO(2). It can easily be shown thatω is covariant with respect toψg and hence the
induced action is canonical. As an illustration letg be the counter-clockwise rotation by
90o (so thatgu1 = u2 and gu2 = −u1), and letP = ∫

R P(u1)dx andQ = ∫
RQ(u2)dx

for real-valued differentiable functionsP and Q. Then Ψ (P) = ∫
R P(u2)dx, Ψ (Q) =∫

RQ(−u1)dx and{Ψ (P), Ψ (Q)} = − ∫R P ′(u2)Q′(−u1)dx. On the other hand{P,Q} =
− ∫R P ′(u1)Q′(u2)dx, so thatΨ ({P,Q}) = − ∫R P ′(u2)Q′(−u1)dx.

The following will be needed in our subsequent work.

Proposition 2.4. dH ((jψ)∗η) = (jψ)∗(dHη) for η ∈ Ωm,0, m arbitrary.

Proof. Let η = αIdx̃
I where eachαI : J∞E → R. We assume that theαI ’s depend on the

transformed variables (˜xj, ũbK). Then

dH ((jψ)∗(α)) = dH ((αI ◦ jψ)d(x̃I ◦ ψ))

= {Di(αI ◦ jψ)}dxi ∧ d(x̃I ◦ ψ)

=
{(

∂αI

∂x̃j
◦ jψ

)
∂(x̃j ◦ ψ)

∂xi
+
(
∂αI

∂ũb
K

◦ jψ

)
∂jψb

K

∂xi
+ ua

iI

(
∂αI

∂ũb
K

◦ jψ

)
∂jψb

K

∂ua
I

}

× dxi ∧ d(x̃I ◦ ψ)

=
{(

∂αI

∂x̃j
◦ jψ

)
d(x̃j ◦ ψ) +

(
∂αI

∂ũb
K

◦ jψ

)(
∂jψb

K

∂xi
+ ua

iI

∂jψb
K

∂ua
I

)
dxi
}

× ∧ d(x̃I ◦ ψ)

=
{(

∂αI

∂x̃j
◦ jψ

)
+
(
∂αI

∂ũb
K

◦ jψ

)(
∂jψb

K

∂xi
+ ua

iI

∂jψb
K

∂ua
I

)
(J−1)ij

}
d(x̃j ◦ ψ)

× ∧ d(x̃I ◦ ψ)

=
{(

∂αI

∂x̃j
◦ jψ

)
+
(
∂αI

∂ũb
K

◦ jψ

)
(ũb

Kj ◦ jψ)

}
d(x̃j ◦ ψ) ∧ d(x̃I ◦ ψ)

= {(D̃jαI ) ◦ jψ}(d(x̃j ◦ ψ) ∧ d(x̃I ◦ ψ)) = (jψ)∗(dH (α)),

where we assumed thatjψb
K = ũbK ◦ jψ andJ is the Jacobian matrix of the transformation

ψν
M(xµ) as before. �
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3. Canonical automorphisms and sh-Lie algebras

In this section we consider the structure maps of the sh-Lie algebra on the horizontal
complex{Ωi,0}. Throughout the remainder of the paper we assume the horizontal complex
is exact. A complete description of these maps can be found in[2] or one of the references
therein; however it is useful to give a brief overview.

3.1. Overview of sh-Lie algebras

Let F be a vector space and (X∗, l1) a homological resolution thereof, i.e.,X∗ is a
graded vector space,l1 is a differential and lowers the grading by one withF � H0(l1)
andHk(l1) = 0 for k > 0. The complex (X∗, l1) is called the resolution space. (We arenot
using the term ‘resolution’ in a categorical sense.) Consider a homological resolution of
the spaceF of local functionals as in[2]. In the field theoretic framework considered in
[2] it was shown that under certain hypothesis (see the theorem below) the Lie structure
defined by the Poisson bracket onF induces an sh-Lie structure on the graded vector space
Xi = Ωn−i,0(J∞E), for 0 ≤ i < n andXn = Ω0,0(J∞E). For completeness we give the
definition of sh-Lie algebras and include a statement of the relevant theorem.

Definition. An sh-Lie structure on a graded vector spaceX∗ is a collection of linear, skew-
symmetric mapslk :

⊗k
X∗ → X∗ of degreek − 2 that satisfy the relation

∑
i+j=n+1

∑
unsh(i,n−i)

e(σ)(−1)σ(−1)i(j−1)lj(li(xσ(1), . . . , xσ(i)), . . . , xσ(n)) = 0,

where 1≤ i, j.

Notice that in this definitione(σ) is the Koszul sign which depends on the permutationσ as
well as on the degree of the elementsx1, x2, . . . , xn (see for example[10]).

Remark.Although this may seem to generally be a rather complicated structure, it simplifies
drastically in the case of field theory where, aside from the differentiall1 = dH, the only
non-zero maps arel2 andl3 in degree 0.

The theorem relevant to field theory depends on the existence of a linear skew-symmetric
map l̃2 : X0 ⊗ X0 → X0 (in our case the the Poisson bracket will be the integral of this
mapping as we will see in detail shortly) satisfying conditions (i) and (ii) below. These
conditions are all that is needed in order that an sh-Lie structure exists.

Theorem 3.1. A skew-symmetric linear mapl̃2 : X0 ⊗ X0 → X0 that satisfies conditions
(i) and (ii) below extends to an sh-Lie structure on the resolution spaceX∗;

(i) l̃2(c, b1) = b2
(ii)

∑
σ∈unsh(2,1)(−1)σ l̃2(l̃2(cσ(1), cσ(2)), cσ(3)) = b3

wherec, c1, c2, c3 are cycles andb1, b2, b3 are boundaries inX0.
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Subsequently we will suppress some of the notation and assume the summands are over
the appropriate shuffles with their corresponding signs.

We also assume the existence of a chain homotopyswhich satisfies−s ◦ l1 = 1 + l1 ◦ s.
Using this chain homotopy one can definel3 in degree 0 by the compositions ◦ l̃2 ◦ l̃2 which
we may write simply assl̃2l̃2 (we assume the sum over the three unshuffles forl̃2l̃2 with
their corresponding signs).

3.2. The effect of a canonical automorphism on the structure maps of the sh-Lie
algebra

To apply the theorem in the last subsection, we need a candidate forl̃2. We may define
such a mapping onΩn,0 by

l̃2(Pν,Qν) = ωabEa(P)Eb(Q)ν = ω(E(P),E(Q))ν. (3.4)

Recall that for each automorphismψ we have (jψ)∗(Pν) = (P ◦ jψ)(detψM)ν. Therefore

l̃2((jψ)∗(Pν), (jψ)∗(Qν)) = (jψ)∗(l̃2(Pν,Qν)) (3.5)

for all P,Q ∈ LocE if and only if

ωabEb((Q ◦ jψ)detψM)Ea((P ◦ jψ)detψM) = [(ω̃abẼb(Q)Ẽa(P)) ◦ jψ](detψM),

for all P,Q ∈ LocE, which byLemma 2.2is equivalent to

ωab(detψM)2
∂ψd

∂ub

∂ψc

∂ua
(Ẽd(Q) ◦ jψ)(Ẽc(P) ◦ jψ)

= (ω̃ab ◦ jψ)(Ẽb(Q) ◦ jψ)(Ẽa(P) ◦ jψ)(detψM).

The last equation is true for allP,Q ∈ LocE, so it is equivalent to

ω̃ab ◦ jψ = (detψM)ωcd ∂ψ
a
E

∂uc

∂ψb
E

∂ud

which in turn is equivalent to the covariance ofω.
Now considerl3 in degree 0. We have

l3((jψ)∗(Pν), (jψ)∗(Qν), (jψ)∗(Rν)) = s[ l̃2(l̃2((jψ)∗(Pν), (jψ)∗(Qν)), (jψ)∗(Rν))]

= s[ l̃2((jψ)∗(l̃2(Pν,Qν)), (jψ)∗(Rν))]

= s[(jψ)∗(l̃2(l̃2(Pν,Qν), Rν))]

= s[−(jψ)∗(l1l3(Pν,Qν,Rν))]

= s[−l1((jψ)∗l3(Pν,Qν,Rν))]



S. Al-Ashhab, R. Fulp / Journal of Geometry and Physics 53 (2005) 365–391 377

since in this casel1 = dH so it commutes with the pull-back (Proposition 2.4). Proceeding
using the identity

−s ◦ l1 = 1 + l1 ◦ s

the above becomes

(1 + l1 ◦ s)[(jψ)∗(l3(Pν,Qν,Rν))]

= (jψ)∗(l3(Pν,Qν,Rν)) + l1 ◦ s[(jψ)∗(l3(Pν,Qν,Rν))].

Sol3((jψ)∗(Pν), (jψ)∗(Qν), (jψ)∗(Rν)) = (jψ)∗(l3(Pν,Qν,Rν)) up to an exact form. We
have shown:

Theorem 3.2. Letψ : E → E be an automorphism of E sending fibers to fibers, and let
jψ : J∞E → J∞E be its induced automorphism onJ∞E. Then

l̃2((jψ)∗α, (jψ)∗β) = (jψ)∗(l̃2(α, β))

for all α, β ∈ Ωn,0(J∞E) iff ω is covariant with respect toψ. Moreover we then have

l3((jψ)∗α, (jψ)∗β, (jψ)∗γ) = (jψ)∗l3(α, β, γ) + l1(δ),

for all α, β, γ ∈ Ωn,0(J∞E), and for someδ ∈ Ωn−2,0(J∞E).

4. Reduction of the graded vector space in field theory

LetM be a manifold,E → M a vector bundle, andJ∞E the infinite jet bundle ofE. Let
G be a Lie group acting onE via automorphisms (as inSection 2) and hence inducing an
action ofG on J∞E. We assume the induced actionψ̂g on ΓE is canonical with respect
to the Poisson bracket of local functionals for allg ∈ G. Notice thatG acts via canonical
tranformations on the space of functionals iff for everyjψg

l̃2((jψg)∗f1, (jψg)∗f2) = (jψg)∗(l̃2(f1, f2)),

where l̃2 is defined on the vector spaceΩn,0(J∞E) as in the previous section (in fact
l̃2(f1, f2) = 1/2[ω(E(f1),E(f2)) − ω(E(f2),E(f1))], see alsoEq. (3.4)).

Definition.Given an automorphismψ of the bundleE, a differential formα ∈ Ωk,l(J∞E)
isψ-invariant iff ( jψ)∗α = α. If G acts onE via automorphismsψg : E → E, g ∈ G, then
α isG-invariant iff it is ψg-invariant for allg ∈ G.

Let Ω
k,l
ψ (J∞E) denote the space of allψ-invariant forms onJ∞E which are in

Ωk,l
c (J∞E), and letΩk,l

G (J∞E) denote the space of allG-invariant forms inΩk,l
c (J∞E).

One also needs the following:
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Definition. Assume thatG acts onE such thatJ∞E/G has a manifold structure and the
canonical projection mapπ : J∞E → J∞E/G is smooth. ThenΩk,0

c (J∞E/G) is the sub-
space ofk-formsα ∈ Ωk

c(J
∞E/G) such thatπ∗α ∈ Ω

k,0
G (J∞E), andΩ∗,0

c (J∞E/G) is the
reduced graded spaceof the graded spaceΩ∗,0

c (J∞E) with respect toG.

We are interested in actions that send fibers to fibers, i.e. the transformation of the inde-
pendent variables does not depend on the dependent variables, so that acting on an element
of Ωk,0

c (J∞E) gives an element of the same space and the reduction toΩ∗,0
c (J∞E/G)

makes sense.
In fact we will also assume that the mapψM representing the transformation of the

independent variables (xν = ψν
M(xµ)) is the identity for allg ∈ G (see the proposition that

follows). This will enable us to define a differential on the reduced graded space. It will also
insure that the spaceΩn,0

c (J∞E) does not collapse to zero upon reduction (due to a reduction
in the number of independent variables so that anyn-form inΩn,0

c (J∞E/G) would be trivial)
which is desired so that the induced sh-Lie structure would not necessarily be trivial.

Proposition 4.1. If ψM is the identity map, thenπ∗ : Ωk,0
c (J∞E/G) → Ω

k,0
G (J∞E) is

onto.

Proof. Notice that ifψM is the identity map one can choose coordinates{xi} onJ∞E/G

such thatπ∗xi = xi, i = 1,2, . . . , n (where by an abuse of notation we denote byxi both
coordinates onM andJ∞E/G) are the coordinates onM. Now π∗(αIdxI ) = (αI ◦ π)dxI

where|I| = k, i.e. we are assumingαIdxI ∈ Ωk,0
c (J∞E/G). Sinceπ is a smooth canonical

projection, it is clear that for any smoothG-invariant functionf on J∞E there exists a
smooth functionαI onJ∞E/G such thatf = αI ◦ π. The result follows. �
Corollary 4.2. If ψM is the identity map, then we have an isomorphismπ∗ :
Ωk,0

c (J∞E/G) −→ Ω
k,0
G (J∞E).

In this setting it can be shown thatΩ∗,0
c (J∞E/G) is a complex with a differential

d̂H : Ωm,0
c (J∞E/G) −→ Ωm+1,0

c (J∞E/G) defined by

d̂Hh = (π∗)−1(dH (π∗h)).

This is well defined since dH (π∗h) is invariant under the group action which follows
from the fact thatπ∗h is invariant under the group action so that (jψg)∗(dH (π∗h)) =
dH ((jψg)∗(π∗h)) = dH (π∗h). Also notice that̂dH ◦ d̂H = 0 easily follows from dH ◦ dH =
0. Sod̂H is a well-defined differential.

Reduction hypothesis.Assume that every invariant dH -exact form is the horizontal differ-
ential of an invariant form. This hypothesis will guarantee that the reduced graded space
with the differential̂dH is exact. Subsequently we will determine sufficient conditions which
will insure that this is true.

This assumption will also yield the two conditions, (i) and (ii) below, that are needed to
obtain the sh-Lie structure on the reduced graded space.

Lemma 4.3. Suppose thatΩ∗,0
c (J∞E) is exact. If for everydH -exact formα ∈ Ω

k,0
G (J∞E)

there existsγ ∈ Ω
k−1,0
G (J∞E) such thatα = dHγ, then the reduced graded space is exact.
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Proof. Suppose that̂dHβ = 0, thenπ∗(d̂Hβ) = 0 and by the definition of̂dH this implies
that dH (π∗β) = 0. Now exactness ofΩ∗,0

c implies thatπ∗β = dHγ for someγ, andγ can
be chosen so that it is invariant by assumption since dHγ is, soγ = π∗τ for someτ. By the
definition ofd̂H then dH (π∗τ) = π∗(d̂Hτ) so thatπ∗β = π∗(d̂Hτ) or

π∗(β − d̂Hτ) = 0

from whichβ − d̂Hτ = 0, and thereforeβ = d̂Hτ. (Observe thatπ∗δ = δ ◦ dπ = 0 implies
that δ = 0 for δ ∈ Ωk,0

c (J∞E/G) sincedπ is onto.) �

Remark.We have used the simplified notationΩ∗,0
c for Ω∗,0

c (J∞E).

Corollary 4.4. Under the same hypothesis as in the preceeding lemma, the subcomplex of
G-invariant forms,Ω∗,0

G (J∞E), is exact.

Now we proceed to finding a map on the reduced spaceΩn,0
c (J∞E/G) analogous to and

induced bỹl2 on the spaceΩn,0
c (J∞E). Definel̂2 by

(l̂2(f1, f2)) = (π∗)−1l̃2(π∗f1, π
∗f2)

wheref1, f2 ∈ Ωn,0
c (J∞E/G). Notice that this is well-defined sincel̃2(π∗f, π∗h) is invari-

ant under the group action by the following calculation

(jψg)∗ l̃2(π∗f, π∗h) = l̃2((jψg)∗(π∗f ), (jψg)∗(π∗h)) = l̃2(π∗f, π∗h),

and the map (π∗)−1 exists byCorollary 4.2.
Skew-symmetry and linearity ofl̂2 follow from the skew-symmetry and linearity ofl̃2.

Furthermorêl2 satisfies

(i) l̂2(d̂Hk1, h) = d̂Hk2,

(ii)
∑

σ∈unsh(2,1)(−1)σ l̂2(l̂2(fσ(1), fσ(2)), fσ(3)) = d̂Hk3,

wherek1 ∈ Ωn−1,0
c (J∞E/G), whileh, f1, f2, f3 ∈ Ωn,0

c (J∞E/G), and for somek2, k3 ∈
Ωn−1,0

c (J∞E/G). Recall that we may suppress some of the notation and assume the sum-
mands are over the appropriate shuffles with their corresponding signs.

To verify (i) notice that

π∗(l̂2(d̂Hk1, h)) = l̃2(π∗(d̂Hk1), π∗h)

= l̃2(dH (π∗k1), π∗h)

= dHK2,

for someK2 ∈ Ωn−1,0
c (J∞E). But by our assumptionK2 can be chosen to be invariant under

the group action since dHK2 is, i.e.,K2 = π∗k2 for somek2 ∈ Ωn−1,0
c (J∞E/G), and then

dHK2 = dH (π∗k2) = π∗(d̂Hk2) by the definition ofd̂H . This implies that̂l2(d̂Hk1, h) =
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d̂Hk2. (Recall thatπ∗α = α ◦ dπ = 0 implies thatα = 0 for α ∈ Ωn,0
c (J∞E/G) sincedπ

is onto.)
While to verify (ii), notice that

π∗(l̂2(l̂2(f1, f2), f3)) = l̃2(l̃2(π∗f1, π
∗f2), π∗f3)

= dHK3,

where the sum is over the unshuffles (2,1), and for someK3 ∈ Ωn−1,0
c (J∞E) and all

f1, f2, f3 ∈ Ωn,0
c (J∞E/G). AgainK3 can be chosen to be invariant under the group ac-

tion since dHK3 is, i.e.,K3 = π∗k3 for somek3 ∈ Ωn−1,0
c (J∞E/G), and then dHK3 =

dH (π∗k3) = π∗(d̂Hk3) by the definition of̂dH . This implies that̂l2(l̂2(f1, f2), f3) = d̂Hk3.
We have shown (see Lemmas 1 and 2 in[2] andTheorem 3.1):

Theorem 4.5. There exists a skew-symmetric bilinear bracket onH0(d̂H ) × H0(d̂H ) that
satisfies the Jacobi identity, where we are usingH0(d̂H ) for Hn(Ω∗,0

c (J∞E/G), d̂H ). This
bracket is induced by the mapl̂2.

Theorem 4.6. The skew-symmetric linear map̂l2 as defined above on the space
Ωn,0

c (J∞E/G) extends to an sh-Lie structure on the graded spaceΩ∗,0
c (J∞E/G).

4.1. Exactness of the reduced graded space

In this section we find sufficient conditions under which our reduction hypothesis
in the last section holds. Thus we consider the question: Ifα is in the reduced space
Ωk−1,0

c (J∞E/G) and d̂Hα = 0, then isα = d̂Hβ for someβ? SupposêdHα = 0 for
α ∈ Ωk,0

c (J∞E/G), then dH (π∗α) = 0 so thatπ∗α = dHγ for someγ ∈ Ωk−1,0
c (J∞E)

sinceΩ∗,0
c (J∞E) is exact. Notice that dHγ is invariant under the group action (since

dHγ = π∗α) so dHγ = jψ∗
g(dHγ) for all g ∈ G, or since dH commutes withjψ∗

g by
Proposition 2.4, dHγ = dH (jψ∗

gγ) for all g ∈ G. So

γ = jψ∗
gγ + dHτg,

where τg ∈ Ωk−2,0
c (J∞E) depends ong. Consider γ ′ = γ + dH@ for some fixed

@ ∈ Ωk−2,0
c (J∞E) and notice that dHγ ′ = dHγ = π∗α. Now γ ′ = γ + dH@ =

jψ∗
gγ + dHτg + dH@ so that jψ∗

gγ = γ ′ − dHτg − dH@, and hencejψ∗
gγ

′ = jψ∗
gγ +

jψ∗
g(dH@) = γ ′ − dHτg − dH@ + jψ∗

g(dH@). But if γ ′ is invariant under the group ac-
tion then−dH@ − dHτg + jψ∗

g(dH@) = 0 or

dH (jψ∗
g@ − @ − τg) = 0,

(recall that dH commutes withjψ∗
g by Proposition 2.4) so that (jψ∗

g@ − @ − τg) is exact.
Notice that this is a necessary and sufficient condition for the exactness of the reduced
space. In this case letβ = π∗γ ′ and notice thatπ∗(d̂Hβ) = dHγ ′ = π∗α so thatd̂Hβ = α.

Observe thatτg depends ong and onγ whereas@ depends onγ.



S. Al-Ashhab, R. Fulp / Journal of Geometry and Physics 53 (2005) 365–391 381

We find the above criterion too general and rather complicated, and find it useful to
consider a special case. Suppose thatG iscompactand letα ∈ Ωk,0

c (J∞E) be a closed form
that is invariant under the group action. By exactness ofΩ∗,0 there exists aβ such that
dHβ = α. Observe that dH (jψ∗

gβ) = jψ∗
g(dHβ) = jψ∗

gα = α for all g ∈ G. So

∫
G

dH (jψ∗
gβ)dg =

∫
G

αdg = α

∫
G

dg = α · vol(G) = α

assuming thatvol(G) = 1. Now let

β̂ =
∫
G

(jψ∗
gβ)dg

and notice that dHβ̂ = ∫
G

dH (jψ∗
gβ)dg = α, and jψ∗

h(β̂) = ∫
G
jψ∗

h(jψ∗
gβ)dg =∫

G
(jψ∗

ghβ)d(gh) = β̂. So we have:

Proposition 4.7. If the groupG acting (canonically) on E is compact, then everydH -closed
form that is G-invariant is the horizontal differential of a G-invariant form. Consequently
Ω∗,0

c (J∞E/G) is exact and admits an (induced) sh-Lie structure.

4.2. The existence of an sh-Lie structure on the subcomplex of G-invariant forms

In this subsection we consider the subcomplex ofG-invariant forms

· · · → Ω
n−1,0
G (J∞E)

dH→Ω
n,0
G (J∞E).

Working with the subcomplex ofG-invariant forms is rather interesting. We shall maintain
the same assumptions made earlier in this section, in particular the hypotheses ofLemma
4.3. Recall that throughout this section we require the mappingψM representing the tran-
formation of the independent variables to be the identity.

In fact, if the base manifoldM is one-dimensional these assumptions are not needed for
this subcomplex to be exact. However their absence does not guarantee the existence of an
sh-Lie structure (that’s obtained from the original one).

Recall that byCorollary 4.4the subcomplex ofG-invariant forms is exact and observe
that l̃2(α, β) = l̃2((jψ)∗α, (jψ)∗β) = (jψ)∗ l̃2(α, β) for α, β ∈ Ω

n,0
G (J∞E). Sol̃2 can be re-

stricted to the subspaceΩn,0
G (J∞E), and if we combine this with exactness, we notice that

conditions (i) and (ii) that guarantee the existence of the sh-Lie structure, as stated earlier in
this section, are readily established (this sh-Lie structure is just the restriction of the original
one to the subcomplex ofG-invariant forms). So we have:

Theorem 4.8.Under the same hypotheses as inLemma 4.3, there exists an sh-Lie structure
on the subcomplex of G-invariant formsΩ∗,0

G (J∞E).
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Example.ConsiderM = R, E = R × R2, and let

ω =
(

0 1
−1 0

)
.

Consider the action ofG = SO(2) onE defined byψg(x, u1, u2) = (x, g · (u1, u2)), g ∈
SO(2), and observe thatSO(2) is compact. As we noticed in the example inSection 1,
ω is covariant with respect toψg and hence the induced action is canonical for allg ∈
G. Consider a subset ofJ∞E defined by (J∞E)′ = J∞E − {u ∈ J∞E|u = (u1

I , u
2
I ) =

(0,0), I = 0,1,2,3, . . .}, whereu1
0 = u1, u1

1 = u1
x, u

1
2 = u1

xx, . . . etc.
Notice that at a point in (J∞E)′ u1 andu2 cannot be zero at the same time,u1

x and
u2
x cannot be zero at the same time, and so on. We note that (J∞E)′/G = R × (R+) ×

(R+) × S1 × (R+) × S1 × · · ·, whereR+ is the set of all positive real numbers (without
the 0). As an illustration letα = u1dx and notice that (jψg)∗α = (cosθ)u1 + (sinθ)u2,
whereasβ = (1/2)[(u1)2 + (u2)2]dx is invariant under the induced action ofG and so is
γ = (1/2)[(u1

x)
2 + (u2

x)
2]dx. As for the sh-Lie structure, first notice that the resolution space

is rather simple:

0 → Loc0
E → Ω1,0

c (J∞E).

One finds that

l̃2(Pdx,Qdx) = (E1(P)E2(Q) − E2(P)E1(Q))dx,

while l2(Pdx, f ) = 0 forf ∈ Loc0
E sincel2l1(Pdx, f ) = l2(l1(Pdx), f ) + l2(Pdx, l1f ) =

0 + l2(Pdx,dHf ) = 0 which follows fromEi(dHf ) = 0, i = 1,2. Furtherl2 = 0 in higher
degrees. We note thatl3 is non-zero on degree 0, but is zero on higher degrees. Let for ex-
ampleP1 = u1u2

x, P2 = u1u2, andP3 = (u1)2, theñl2l̃2(P1dx, P2dx, P3dx) = 4u1u1
xdx =

dH (2(u1)2), so that we can choosel3(P1dx, P2dx, P3dx) = −2(u1)2.
The subcomplex ofG-invariant forms is exact and so the sh-Lie structure can be restricted

to it. Observe that, for example,̃l2(β, γ) = l̃2((1/2)[(u1)2 + (u2)2]dx, (1/2)[(u1
x)

2 +
(u2

x)
2]dx) = (−u1u2

xx + u2u1
xx)dx is invariant under the induced group action ofG =

SO(2).

Remark. In [12] Kogan and Olver provide a definitive account of invariant Euler-Lagrange
equations using moving frames and other tools from differential geometry. We note that
their invariantization mapı in our case will just map horizontal differentials to themselves
(i.e. in local coordinatesı(dxi) = dxi). Consequently the invariant derivatives are the same
as the ordinary derivativesDi = Di (here we are borrowing some of the notation from
[12]) whereas the twisted invariant adjoints ofDi turn out to beD†i = −Di. Now suppose
that I1, . . . , Im is a fundamental set of differential invariants (onJ∞E). Let Î1, . . . , Îm

be coordinates onJ∞E/G such that̂Ik ◦ π = Ik, k = 1, . . . , m whereπ is the canonical
projection mapπ : J∞E → J∞E/G, and letL̂ be the corresponding Lagrangian defined
on J∞E/G for some (invariant) LagrangianL = L̂ ◦ π defined onJ∞E. The invariant
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Eulerian(in [12]) is defined by

Eα(L̃) =
∑
K

D†K
∂L̃

∂IαK

whereL̃ indicates the Lagrangian is written in terms of theIαK ’s. But thisEα, in our case,
reduces to

Eα(L̃) =
∑
K

(−D)K
∂L̃

∂IαK
.

A corresponding invariant Euleriancan be defined onJ∞E/G. To accomplish this, first
define “total derivative”D̂k on J∞E/G by (D̂kP̂) ◦ π = Dk(P̂ ◦ π) whereP̂ is a smooth
function onJ∞E/G. Now let ÎαK = D̂KÎ

α and notice that̂IαK ◦ π = IαK = DKI
α. Finally,

define

Êα(L̂) =
∑
K

(−D̂)K
∂L̂

∂ÎαK

and observe that̂Eα(L̂) ◦ π = Eα(L̃). The reader should consult[12] for more details.

5. Functional invariance

In this section we consider the implications of invariance on the space of functionals.
Assume thatψ is canonical, i.e.

{P ◦ ψ̂,Q ◦ ψ̂} = {P,Q} ◦ ψ̂

for all functionalsP,Q.

Definition.We say thatP is invariant underψ iff P ◦ ψ̂ = P.

Notice that this holds if, and only if

∫
M

(P ◦ jψ ◦ jφ)detψMν =
∫
M

(P ◦ jφ)ν

for all φ ∈ ΓE, which in turn holds if (P ◦ jψ)detψM = P . Similarly one says thatP ∈
Loc0

E is invariant underψ iff (P ◦ jψ)detψM = P . LetFψ denote the set of all functionals
P such thatP ◦ ψ̂ = P. Observe that

P,Q ∈ Fψ ⇒ {P,Q} ∈ Fψ
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soFψ is a Lie subalgebra ofF. Let Loc0
E(ψ) denote the subset ofLoc0

E consisting of
P ∈ Loc0

E such that

P = (P ◦ jψ)detψM.

We note thatLoc0
E(ψ) is a subspace ofLoc0

E, while for automorphismsψ such that detψM =
1, Loc0

E(ψ) is a subalgebra ofLoc0
E.

Proposition 5.1. If Pν ∈ Ωn,0(J∞E) is ψ-invariant for an automorphismψ, then so is
E(Pν).

Proof. In local coordinatesE(Pν) = Ea(P)(θa ∧ ν). So

(jψ)∗(E(Pν)) = (jψ)∗(Ea(P))(jψ)∗(θa ∧ ν)

= (Ea(P) ◦ jψ)

(
∂ψa

E

∂ub
θb ∧ (detψM)ν

)

= (Ea(P) ◦ jψ)
∂ψa

E

∂ub
(detψM)(θb ∧ ν).

Now, sincePν is ψ-invariant we have

Pν = (jψ)∗(Pν)
= (jψ)∗(P)(jψ)∗ν
= (P ◦ jψ)(detψM)ν,

and therefore (P ◦ jψ)detψM = P . Finally,

E(Pν) = Ea(P)(θa ∧ ν)

= Ea((P ◦ jψ)detψM)(θa ∧ ν)

= (detψM)
∂ψb

E

∂ua
(Eb(P) ◦ jψ)(θa ∧ ν)

= (jψ)∗(E(Pν)),

where we have usedLemma 2.2in the last calculation. �

If G is a Lie group which acts onE via canonical automorphismsψg, for all g ∈ G, then
we write

Loc0
E(G) =

⋂
g∈G

Loc0
E(ψg), FG =

⋂
g∈G
Fψg.

ClearlyFG is a Lie sub-algebra ofF, and ifP ∈ Loc0
E(G), thenE(Pν) isG-invariant.

Notice that ifφ is a section of the bundleE → M thenj∞φ is a section ofπ∞ : J∞E →
M. Sections of this type are said to beholonomicas they are induced by a section ofE → M.
It is easily shown that not all sections ofπ∞ are holonomic. Observe thatπ ◦ j∞φ is a section
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of the bundleτ : J∞E/G → M sinceπ∞ = τ ◦ π. Similarly we say that a sectionη of τ
is holonomicif it has the formη = π ◦ j∞φ for some sectionj∞φ of π∞. Let Γ denote
the set of all holonomic sections ofτ. Note thatΓ is not a linear space overR sinceπ is
not linear. IndeedJ∞E/G is generally not a vector bundle.

Definition.We say that̃P is areduced local functionalif it is a mapping from the setΓ of
holonomic sections of the bundleτ : J∞E/G → M intoR such that

P̃(η) =
∫
M

η∗(P̃)ν

for some smooth mapping̃P : J∞E/G → R and for everyη ∈ Γ . We denote the set of all
reduced local functionals bỹF.

In this definition, when we say thatP̃ : J∞E/G → R is smooth we mean thatP̃ ◦ π is
in Loc0

E.
Proposition 5.2. There is a bijectionC from F̃ ontoFG. The mappingC is defined as
follows: if P̃ is defined by

P̃(η) =
∫
M

η∗(P̃)ν

for some smooth mapping̃P, thenC(P̃) = P is defined by

P(φ) =
∫
M

(j∞φ)∗(P)ν

whereP = P̃ ◦ π.
The proof of the proposition is straightforward and is omitted.

Remark. It follows from the proposition that the setF̃ of reduced local functionals inherits
a Lie-structure from that onFG. In the sequel it is identified withFG.

Notice that byProposition 5.1the complex

Ω0,0
c

dH→Ω1,0
c

dH→ · · · dH→Ωn−1,0
c

dH→Ωn,0
c

E→Ωn,1
c → · · ·

induces a subcomplex

Ω
0,0
ψ

dH→Ω
1,0
ψ

dH→ · · · dH→Ω
n−1,0
ψ

dH→Ω
n,0
ψ

E→Ω
n,1
ψ → · · ·

This subcomplex is exact up to the termΩn−1,0
ψ (and including it, i.e.Hn−1

ψ = 0), if

we assume thatΩ∗,0
c is itself exact and that every exactψ-invariant form is the horizontal

differential of someψ-invariant form. Similarly, the subcomplex

Ω
0,0
G

dH→Ω
1,0
G

dH→ · · · dH→Ω
n−1,0
G

dH→Ω
n,0
G

E→Ω
n,1
G → · · ·

is exact up to the termΩn−1,0
G (under the same assumptions).
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6. An example: a Poisson sigma model

A number of authors[6,9,16]have investigated a class of physical theories called Pois-
son sigma models. These models focus on fields which are defined on a two-dimensional
manifoldΣ with range in a Poisson manifoldM. These models seem to have first arisen in
various theories of two-dimensional gravity but have been applied to areas such as topolog-
ical field theory and in the reformulation of Kontsevich’s work on deformation quantization
[6]. We consider an application of our results to the version of the Poisson sigma model
presented in the work of Ikeda[9] but we utilize the notation of[2].

Assume thatV is a finite-dimensional vector space, say of dimensionN and with basis
{TA}, and let{TA} denote the basis of the spaceV ∗ dual toV. We assume the existence of
a Poisson tensorWonV ∗. ThusW is a bivector field

W = WAB

(
∂

∂TA
∧ ∂

∂TB

)

where, for eachA, TA is identified as a coordinate mappingTA : V ∗ → R andV is identified
with V ∗∗. The fact thatW is Poisson means that it is a tensor and the{WAB} are functions
onV ∗ (assumed to be polynomials in the coordinates{TA} in the present model) such that

WAD

∂WBC

∂TD
+ WBD

∂WCA

∂TD
+ WCD

∂WAB

∂TD
= 0

andWAB = −WBA. NowV ∗ is a Poisson manifold with

{f, g} = WAB

∂f

∂TA

∂g

∂TB

for smooth functionsf, g defined onV ∗.
Observe that the Poisson fieldW is not dependent on the basis used to represent it. If the

componentsWAB of W relative to a basis{TA} of V satisfy the Poisson conditions given
above then the components̄WAB of W relative to any other basis{T̄B} of Vwill also satisfy
these same conditions. Notice thatWAB = {TA, TB} and that if{T̄A} is a different basis and
{W̄AB} are the components ofW relative to it thenW̄AB = {T̄A, T̄B} as well.

The fields of Ikeda’s model are ordered pairs (ψ, h) whereψ is a mapping from the two-
dimensional manifoldΣ intoV ∗ andh is a mapping fromΣ intoT ∗Σ ⊗ V . In components

ψ(x) = ψA(x)TA, h(x) = hAµ(x)(dxµ ⊗ TA)

where{xµ} are coordinates onΣ. One form of Ikeda’s Lagrangian for two-dimensional
gravity is

L = εµν
[
hAµDνψA − 1

2
WABh

A
µh

B
ν

]
,
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whereε is the skew-symmetric Levi-Civita tensor onΣ such thatε01 = 1 and

DνψA = ∂νψA + WABh
B
ν .

It is our intent to show how some of our work relates to Ikeda’s model. To cast this model in
our formalism letEdenote the vector bundle overΣ with total spaceE = V ∗ ⊕ [T ∗Σ ⊗ V ]
and with the obvious projection ofE ontoΣ. The fields (ψ, h) are sections of this bundle.

First we show how to define a Poisson bracket on the relevant space of local functionals.
To accomplish this, we want to construct a mappingω as inSection 2.1in such a manner
that the Jacobi condition is satisfied.

For this purpose we find it convenient to introduce a positive definite metricµ onVwith
its induced metricµ∗ onV ∗. Moreover we choose{TA} to be an orthonormal basis relative
to µ and we define{TB} by TB(v) = µ(v, TB) for eachB and for allv ∈ V . It follows that
{TA} is aµ∗-orthonormal basis ofV ∗ and that the basis{TA} is dual to{TB}. Define a tensor
W̃ onV by

W̃ = WAB

(
∂

∂TA
∧ ∂

∂TB

)

whereWAB = µACµBDWCD, andµPQ = µ∗(TP, TQ) for 1 ≤ P,Q ≤ N. ThusW̃ is the
tensor onV induced byWand the metricµ.

We reformulate this data in terms of the jet bundle ofE. In particular the tensorsw, w̃
induce a bilinear mappingω on the jet bundle which is used to define a Lie structure on the
space of functionals. Local coordinates onEmay be denoted (xµ, uA,wB

µ) and those on the
jet bundleJ∞E by (xµ, uAI , w

B
µ,J ). Thus if (ψ, h) is a section ofEwe have

xµ((ψ, h)(p)) = xµ(p), uA((ψ, h)(p)) = ψA(p)

and

wB
µ((ψ, h)(p)) = hBµ.

Clearly, there is a corresponding splitting of the jet coordinates. It follows that in local
coordinates each local functionPonJ∞E is a function of (xµ, uA,I , w

B
ν,J ). Now the{WAB}

are functions of the coordinates{TA} onV and these coordinates are denoted{uA} on the
bundleE. Consequently we can regard the{WAB} as being functions on the jet bundleJ∞E

which depend polynomially on the coordinates{uA} and are in fact independent of the
coordinatesxµ, uA,I , w

B
µ,J for |I| ≥ 1. The functionω is required to be a mapping from

Ω
n,1
0 × Ω

n,1
0 intoLocE. Observe that there are two types of contact formsθA, θ

B
µ onJ∞E,

those which arise from the coordinates{uA} and those which arise from{wB
µ}. Since each

fiber ofE is a direct sum of two vector spaces the matrix of components ofω is a block
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diagonal matrix with two blocks defined by

ωAB = WAB and ωA,B
µ,ν = δµνW

AB.

Hereδµν is the usual Kronecker delta symbol. In the first block we have written the indices
of ωab as lower indices as they represent components relative to a basis of the dual ofV. In
the second block it is appropriate to write the componentsω(µ,A),(ν,B) asωA,B

µ,ν for similar
reasons. Notice that the matrix ofω is skew-symmetric and

ωAD

∂ωBC

∂uD
+ ωBD

∂ωCA

∂uD
+ ωCD

∂ωAB

∂uD
= 0.

The other components ofω satisfy a similar condition as they too are determined by the
{WAB}. It follows from this fact and Eq. (7.11) of[15] that the bracket of local functionals
defined on sections ofE by

{P,Q}(φ) =
∫
Σ

[ωabEa(P)Eb(Q)] ◦ (j∞φ)ν

satisfies the Jacobi identity (see the discussion inSection 2.1).
Ikeda shows that the Euler operators for the LagrangianL in this model are given by

EA(L) = εµνRA
µν, Eµ

A(L) = εµνDνψA

where

RA
µν = ∂µh

A
ν − ∂νh

A
µ + ∂WBC

∂TA
hBµh

C
ν .

This suggests that for every local functionPwe should define

EA(P) = (−D)I

(
∂P

∂uA,I

)
, Eµ

B(P) = (−D)J

(
∂P

∂wB
µ,J

)
.

Consequently, the Poisson bracket assumes the following form:

{P,Q}(ψ, h) =
∫
Σ

[ωABEA(P)EB(Q)] ◦ j∞(ψ, h)ν

+
∫
Σ

[ωA,B
µ,ν E

µ
A(P)Eν

B(Q)] ◦ j∞(ψ, h)ν.

Now we characterize the automorphisms ofE that induce canonical transformations,
relative to the Poisson bracket, on the space of functionalsF. Recall that inSection 2.2
we have referred to such automorphisms as canonical automorphisms. Suppose thatΨ is a
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linear automorphism ofE, i.e., assume that there are matricesR, S which are functions on
Σ such that

Ψ ([TA ⊕ (dxµ ⊗ TB)]) = (RA
CT

C) ⊕ (dxµ ⊗ (SDB TD)).

We determine conditions which insure thatΨ is a canonical automorphism ofE. According
to Lemma 2.1of Section 2.1such an automorphism will be canonical iff its components
satisfy condition (ii) of the Lemma.

Observe thatΨA = uA ◦ Ψ = RC
AuC,Ψ

A
µ = wA

µ ◦ Ψ = SADw
D
µ and

∂ΨA

∂uB
= RB

A,
∂ΨA

µ

∂wB
ν

= SABδ
ν
µ.

Consequently, if the matrices satisfy the conditions

W̄AB = WCDR
C
AR

D
B , W̄AB = WCDSACS

B
D

whereW̄AB are the components of the tensorW relative to a new basis̄TA = MC
ATC and

T̄ A = (M−1)ADT
D, then

ω̃AB = ω(θ̃A, θ̃B) = W̄AB = WCDR
C
AR

D
B = ω(θC, θD)

∂ΨA

∂uC

∂ΨB

∂uD

where, we have dropped the volume formν from the definition of the components ofω, as
they were defined inSection 2.1, for simplicity. Similarly, we must have

ω̃A,B
µ,ν = ω(θ̃Aµ , θ̃

B
ν ) = δµνW̄

AB = WCD
∂ΨA

µ

∂wC
λ

∂ΨB
ν

∂wD
ρ

δλρ

which is the same as

ω̃A,B
µ,ν = ω

C,D
λ,ρ

∂ΨA
µ

∂wC
λ

∂ΨB
ν

∂wD
ρ

.

Notice that these computations will be consistent if we require thatR = M andS = M−1

sinceM is the matrix transforming the basis{TA} to {T̄A}, and since we require thatWand
W̃ be tensors. Moreover we must also have thatM be orthogonal if we want the transformed
basis to remainµ-orthonormal. These remarks give us the conditions required in order that
a linear automorphism be canonical.

If G is a Lie group andM : G → O(n) is arepresentationof G by orthogonal matrices
then there is a representationΦ ofGvia canonical automorphisms ofE = V ∗ ⊕ (T ∗Σ ⊗ V )
defined by

Φ(g)([TA ⊕ (dxµ ⊗ TB)]) = (M(g)ACT
C) ⊕ (dxµ ⊗ ([M(g)−1]DBTD)).
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The fact thatΦ : G → Aut(E) is agroup homomorphismis a consequence of the fact that
M defines a linear left action ofG onV via

g · TA = [M(g)−1]BATB

with a corresponding linear left action ofG onV ∗ defined by

g · TA = M(g)ABT
B.

The following theorem is a consequence of these remarks:

Theorem 6.1. For each orthogonaln × n matrix M there is a canonical gauge automor-
phismΨM of the bundleV ∗ ⊕ (T ∗Σ ⊗ V ) −→ Σ which is linear on fibers of the bundle
and which transforms the basis{TA ⊕ (dxµ ⊗ TB)} via

ΨM([TA ⊕ (dxµ ⊗ TB)]) = (MA
CT

C) ⊕ (dxµ ⊗ ((M−1)DBTD)).

Moreover, ifM : G → O(n) is a representation of a Lie group G by orthogonaln × n

matrices, then the mappingΦ : G → Aut(V ∗ ⊕ (T ∗Σ ⊗ V )) defined byΦ(g) = ΨM(g) for
g ∈ G, is a representation ofG by canonical automorphisms ofV ∗ ⊕ (T ∗Σ ⊗ V ). It follows
that the space of local functionals defined on sections of the bundleV ∗ ⊕ (T ∗Σ ⊗ V ) → Σ

admits a reduction as does the complex{Ωk,0
c [J∞(V ∗ ⊕ (T ∗Σ ⊗ V ))], k = 0,1,2, . . . , n}.

Remark. It is not difficult to show that Ikeda’s Lagrangian given above is invariant under
the action of the Lie groupG defined inTheorem 6.1.
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