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Abstract

In many Lagrangian field theories, there is a Poisson bracket on the space of local functionals.
One may identify the fields of such theories as sections of a vector bundle. It is known that the
Poisson bracket induces an sh-Lie structure on the graded space of horizontal forms on the jet bundle
of the relevant vector bundle. We consider those automorphisms of the vector bundle which induce
mappings on the space of functionals preserving the Poisson bracket and refer to such automorphisms
as canonical automorphisms.

We determine how such automorphisms relate to the corresponding sh-Lie structure. If a Lie group
acts on the bundle via canonical automorphisms, there are induced actions on the space of local
functionals and consequently on the corresponding sh-Lie algebra. We determine conditions under
which the sh-Lie structure induces an sh-Lie structure on a corresponding reduced space where the
reduction is determined by the action of the group. These results are not directly a consequence of
the corresponding theorems on Poisson manifolds as none of the algebraic structures are Poisson
algebras.
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1. Introduction

The dynamical “equations of motion” of a Lagrangian field theory are usually derived
from a variational principle of “least action”. Given a Lagranglarthe action ofL is the
functionalSdefined by

S@=AuwwmmM

whereM is a manifold,¢ may be either a vector-valued function or a section of a vector
bundleE over M, andL is a real-valued function on some finite jet bundfeE. More
generally, ifz : E— M is a vector bundle ang® : JE — M is the corresponding
prolongation ofE, then a smooth functio® : J*E — R is called alocal functionon E
provided that for some positive integethere is a smooth functio, : /" E — R such that

P = P, o , wherem, is the projection of/* E onto J" E. Thus all Lagrangians are local
functions on an appropriate bundle. To say tRad alocal functionalon E means thaP is

a mapping from a subspace of compactly supported sectiofis-ef M into R such that

ﬂw=&woﬁ@mwm

for some local functiorP and for all such sectiong of E.

Inimitation of Hamiltonian mechanics one postulates the existence of a “Poisson bracket”
on the spacé of local functionals and then uses it to develop a Hamiltonian theory of fields.
This bracket is assumed to satisfy the Jacobi identity and so defines a Lie algebra structure
on the spacé-. On the other hand there is no obvious commutative multiplication of such
functionals and consequentRjis not a Poisson algebra. This is such a well-known develop-
ment that we may refer to standard monographs on the subject. In particular we call attention
to[7] and[15] for classical expositions and 8] for a quantum field theoretic development.

It was shown in[2] that a Poisson bracket on the space of local functionals induces
what is known as sh-Lie structure on a part of the variational bicomplex which we refer
to as the “de Rham complex” aff° E. This sh-Lie structure is given by three mappings
[1, I, I3 defined on this complex. The mappifhgis skew-symmetric and bilinear, and it
may be regarded as defining a “bracket” but one which generally fails to satisfy the Jacobi
identity. In fact/, satisfies the Jacobi identitylf = 0. In a sense this sh-Lie structure is an
anti-derivative of the Poisson bracket.

In the present paper we intend to develop ideas related to canonical transformations
of these structures. Recall thathf is a Poisson manifold one says that a mapping from
M to itself is a canonical transformation if and only if it preserves the Poisson bracket
defined onC*°(M) [14]. Moreover if one has a Lie group which acts orM via canonical
transformations, one obtains a reduction of the brackets to a reduceddpatée the
presence of appropriate hypothesis. The space of local functionals is not a Poisson algebra
and so there is no underlying Poisson manifold. The bragkistdefined on the space of
“top” forms of the “de Rham complex” which can be identified with the space of local
functions onJ*°E. This space is a commutative algebra under pointwise multiplication,
but/, does not satisfy the Jacobiidentity and so again one does not have a Poisson manifold.
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We say that an automorphism of the bun#lés canonicalprovided that its induced
mapping on the space of local functionals, preserves the Poisson bracket. We then
determine how such automorphisms relate to the sh-Lie structurfdi. Finally we
determine conditions under which there exists an sh-Lie structure on a reduced graded
space in the presence of a Lie group which actg e canonical automorphisms.

We apply these ideas to a Poisson sigma model. Poisson sigma models have proven to
be of interest in many areas of physics. In particular they have been used to describe certain
two-dimensional theories of gravity by Ikef#, topological field theories by Schaller and
Strobl[16], and to obtain a path integral proof of Kontsevich’s theorem on deformation
guantization by Cattaneo and Feldé}. These are but a sample of the many authors who
have made important contributions relating to these model theories.

After presenting some background materialSaction 2 we find conditions for the
inducedautomorphisms on the space of local functionals tedreonical In Section 3wve
show how these induced canonical transformations relate to the sh-Lie structure maps. In
Section 4we assume that one has a Lie group acting by canonical transformations on the
space of functionals. We then determine how this action relates to the sh-Lie structure and
find conditions for the existence of an (induced) sh-Lie structure on a corresponding reduced
space. There is a brief discussion of functional invarian&eiction 51n Section 8ve show
how our formalism applies to a specific Poisson sigma model due initially to Ikeda.

Clearly the questions dealt with in this paper relate more to the mathematical structures
induced by a Poisson bracket on the space of functionals rather than to specific methods of
solving dynamical field equations. Moreover we have restricted our attention to a class of
theories in which the Poisson bracket is induced by a tensdrich is scalar-valued rather
than differential-operator valued. Once we understand this restricted case more fully we hope
to extend these results to a larger class of theories for whisklifferential-operator valued.

Eventually we also intend to expand our scope to include fermionic theories such as
those in[8]. Indeed, the sh-Lie formalism is particularly well-suited to interact with super-
field theories such as those needed to describe the Batalin-Vilkovisky approach to BRST
cohomology. Once anti-fields are introduced, our vector buBdian be modified in such
a manner that both the bosonic fields studied here and the fermionic (anti-)fields become
sections of the new bundle. In this context the Batalin-Vilkovisky anti-bracket is none other
than our Poisson bracket of local functionals with appropriate grading. Thus we expect the
modifications of this work to the latter case to be minimal. In fact this work is motivated by
both the classical field theories such as those descrilj#8Jiand the super-fields developed
in [8]. This approach has proven its worth in investigations such as those foi@hdnu[4].

2. Bundle automorphisms preserving the Poisson structure on the space of
functionals
2.1. Background material
In this section we introduce some of the terminology and concepts that are used in this

work, in addition to some of the simpler results that will be needed. Our exposition and
notation closely follows that ifi2]. First let E — M be a vector bundle where the base
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spaceM is ann-dimensional manifold and lef* E be the infinite jet bundle oE. The
restriction of the infinite jet bundle over an appropriate oper/set M is trivial with fiber
an infinite dimensional vector spa®&°. The bundle

a®  J®Ey=UxV® > U
then has induced coordinates given by

(', u®, uf, ”:’lliz’ o).
We use multi-index notation and the summation convention throughout the pag€p If
is the section off ° E induced by a sectiop of the bundleE, thenu® o j*°¢ = u® o ¢ and

u‘; 0 j%¢ = (3,’13,'2, e, 8,",)(ua o j%¢)

wherer is the order of the symmetric multi-inddx= {i1, i2, ..., i,;}, with the convention
that, forr = 0, there are no derivatives. For more details[¢$¢@and[13].

Let Locg denote the algebra of local functions where a local functio i is defined
to be the pull-back of a smooth function on some finite jet buié € via the projection from
J®Eto JPE. LetLoc% denote the subalgebrabbc suchthat? € Loc% iff ( j°¢)* P has
compact support for a$h € I'E with compact support, whet€E denotes the set of sections
of the bundleE — M. The de Rham complex of differential forniz*(J>°E, d) on J°E
possesses a differential ideal, the id€abf contact forms) which satisfy (*°¢)*6 = 0
for all sectionsp with compact support. This ideal is generated by the contact one-forms,
which in local coordinates assume the foffn= du9 — u¢,dx’.

Using the contact forms, we see that the comglEXJ°°E, d) splits as a bicomplex
£275(J°°E) (though the finite level complex&g*(J” E) do not), where2"*(J*° E) denotes
the space of differential forms aff° E with r horizontal components arglvertical com-
ponents. The bigrading is described by writing a differengtédrm o = aﬂA(Gj‘ A dx!) as
an element of2"(J*° E), with p = r + s, and

1 _ i1 iy A _ pa1 s
dx’ =dxt AL A", 07 =05 N N0

Now let Cg denote the set of contact one-formsasfier zero Contact one-forms of
order zero satisfy jL$)*(6) = 0 and, in local coordinates, they assume the fefm=
du® — u¢dx’. Notice that bothCo and 21 = 2"1(J*E) are modules ovef.ocg. Let
Qg’l denote the subspace &1 which is locally generated by the forni@? A d"x)}

over Locg. We assume the existence of a mappiagfrom Qg’l X 93’1 to Locg, such
thatw is a skew-symmetric module homomorphism in each variable separately. In local
coordinates leb® = w(6® A v, 8” A v), wherev is a volume element okl (notice that in

local coordinates takes the form = fd"x = fdx! A dx2 A ... A dx” for some function

f U — R andU is a subset oM on which thex’’s are defined).

We will assume throughout this paper thetatisfies the conditions that make our Poisson
bracket, which will be defined soon, satisfy the Jacobi identity.
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Define the operatab; (total derivative) byD; = 3/dx’ + u;(9/9u) (recall we assume
the summation convention, i.e., the sum is oveaahd multi-indexJ), and recall that the
Euler-Lagrange operator mag®-%(J*® E) into £2-1(J*® E) and is defined by

E(Pv) = Ea(P)(O" A V)

whereP € Locg, v is a volume form on the base manifditf and the components, (P)
are given by

EAP)=(—DM<8P)-

a
ouf

For simplicity of notation we may usg(P) for E(Pv). We will also useD; for 3/9% +
i¢,(3/80%) and E,(P) for (—D);(3P/31i%) so thatE(P) = E,(P)(@* A v) in the @, ii?)
coordinate system.

Let 2K{(J®°E) be the subspace af2*!(J®E), for {k,1} # {n, 0}, such thata €
QLUJI®E) iff (j*°¢)*a has compact support for all € I'E with compact support, and
let £27-0(J° E) be the subspace 6#-9(J>® E) such thatPv € 2":0(J®E) iff ( j°°¢)*(Pv)
and (>°¢)*E,(P) have compact support for ahl € I'E with compact support and for all
a. We are interested in the complex

0 — 220(J®E) - QM(J®E) —» - —» U LOUYE) —» 28 O(JE)

with the differential g; defined by ¢y = dx'D;, i.e., if & = a;dx! then dya = D;a;dx’ A
dx’. Notice that this complex is exact whenever the base manifbis contractible (e.g.
seg[5]).

Now letF be the space of functionals whees Fiff P = [,, Pv for someP € Loc?,
and define a Poisson bracket #rby

{P@@=&Mﬁﬂﬂ®wa

where¢ € I'E, v is a volume form onM, P = [,, Pv, Q = [,, Qv, and P, Q € Loc%.
Using local coordinatesc{', u) on J*°E, observe that fop € I'E such that the support of
¢ lies in the domair2 of some chark of M, one has

P.aw = [

(m([w“b Ea(P)Es(Q)] 0 jgp o x H(x™H)*(v)
wherex~1 is the inverse ok = (x*).

We assume that satisfies the necessary conditions for the above bracket to satisfy the
Jacobi identity, e.g. s€@5]. Notice that it follows from the identity (7.11) {f5] that the
bracket satisfies the Jacobi identity if the skew-symmetric maiff¥ is a Poisson tensor
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in the sense that:

ab bc ca

wd Y Tud oud

=0,

where{u“} are coordinates on the fiber of the trivial bundle E. This condition is met in the
case of the Poisson sigma model, which we include later in the paper, and more generally
for any trivial vector bundle with a Poisson structure on its fibers.

The functionsP and Q in our definition of the Poisson bracket of local functionals
are representatives @ and Q respectively, since generally these are not unique. In fact
F =~ H"(J®E), whereH"(J®E) = 29(J®E)/(imdy (N 2*°(J*E)) and imdy is the
image of the differential g.

Lety : E — E be an automorphism, sending fibers to fibers, and jgt M — M be
the induced diffeomorphism dfl. Notice thatyr induces an automorphisyy : J*E —

J°E where

GOGZ)P)) = (W o b o v Wm(p)),

for all ¢ € I'E and allp in the domain ofp. In these coordinates the independent variables
transform viax™ = v, (x"). Local coordinate representativesyf; and jy» may be de-
scribed in terms of chartsZ, x) and (2, %) of M, and induced charts#6°)~1(£2), (x", u ug))

and () ~1(2), i+, %)) of J®E.

Remark. In Section 4we will consider (left) Lie group actions of and their induced
(left) actions onJ*° E. Such actions are defined by homomorphisms from the group into
the group of automorphisms &t

Definition. w : _Qg’l X _Qg’l — Locg is covariantwith respect to an automorphisi:
E — E of the above form iff

o((j)*0, (j)*0') = (detyy)(jv)* (w(6, 9)).
forall 6,6 € 251 (J®E).
Observe that

(j¥)*6* = (jy)*(da“ — i, di*)
=d(@“ o jy) — (u o jY)dE* o jh)

= %ﬁfd 4 awEd b % n Z‘/ff b) Yy 3xaoxﬂﬂ
_ Wy v 3‘/fEd b Wegv WV ubdx”

38qu b 8bb v w e
= W(du —u,dx")

_ W g

ub
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where we have assumed thigt = ii“ o ¢ andJ is the Jacobian matrix of the transformation

X" = (xh).

Lemma 2.1. The following are equivalent

(i) o((j¥)*0, (j9)*0) = (deﬁﬂM)gjlﬂ)*(w(G, 0), for all 6, ¢ € 25 (J®E).
(i) &% o ji = (detyy)wd e L.

u

Proof. Notice that
detyy (j)* (0(E(P), E(Q))) = (detyum)w(E(P), E(Q)) o j¥r
= detyu[w(® A v, 68> A V)EL(P)ES(Q)] o jir
= detyy (3™ o jY)(Ea(P) o jW)EL(Q) o j¥)
and that

() (E(P) = (j¥)*(E (P)(9“ A V)

=€) o j1) 2 —E(detyu) (6 A v).
Now
G ECP) 9)"EQ) = (et 2t VE €, (1) o j)Ent@) o )

x w(0¢ A v, 04 A v)

W WE e

onc apd & (Ea(P) 0 jY)EHQ) 0 j)-

= (detyy)*—=

Hencew((jy)*E(P), (j¥)*E(Q)) = (detyu)(jir)*(w(E(P), E(Q))) for all P, Q in Locg
iff (@ o jyr) = (detyr)davs/ouc x b /aud x w.

2.2. Automorphisms preserving the Poisson structure
LetL : JE — Rbe alagrangian idocg (generally we will assume that any element

of Locg is a Lagrangian). Lel = Lo (x*, u$)™* and letL = L o (&*, i9)~%. Then, in
local coordinatesl. is related tal. by the equation

(Lo jy)dety) = L,

wherejy = (3", iih) o (x*, u9)~L andJis the Jacobian matrix of the transformatipgy =
% o (x*)~1. With abuse of notation we may assume coordinates and charts are the same and
write XV = v (x*). For simplicity, we have also assumed tfgf is orientation-preserving.
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In this case the functional

Z:/ Ld"x%
&

is the transformed form of the functional

ZZ:/ Ld"x
17,

wherel andL are related as abov,is the domain of integration an@ is the transformed
domain underjy (see[15], pp. 249-250). Notice that both of these are local coordinate
expressions of the equatiah= | » Lv, for appropriately restricted charts. Now suppose
thaty is an automorphism dE, ji its induced automorphism o™ E, andy, its in-
duced (orientation-preserving) diffeomorphisminAlso suppose that and L are two
Lagrangians related by the equatidnd jy/)dety) = L. We have:

Lemma 2.2. Let P be a Lagrangian as above, then

oS ~
EL(P o jy)det(u) = V(P o j0). (2.1)

Proof. First notice tha€,. (L) = det@) )0y /ou(Ege (L) o Jj¥) (see[15], p. 250). But
(Lo jv)detlm) = L. The identity (2.1) follows by letting? = L. Notice that this is jus-
tified sinceL is arbitrary in the sense that given anythere eX|sts arl derived from a
Lagrangiarl as above such that(o jy/)det@/ ) = L since jy is an automorphism.

Let ¢ denote the mapping representing the mduced action of the automorphism on
sections of, i.e.,¢y : 'E — I'E Wherex/f(c/)) Yodoy, andcj) is a section oE. This
induces a mapping on the space of local functionals given by

(Pod)g) =P(Yodovh)
=/ [Poj(yopoyDly
[P o j(¥ojgoily
| [P o jy o jgl(detyu)y.

where
P(g) = /M(Poj¢)v,

andg¢ is a section ot.
We find conditions on those automorphisms of the space of functionals under which the
Poisson structure is preserved
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Recall that{P, Q} = [, w(E(P), E(Q))v, and hence

(P. Q)(9) = fM[w(E(P), E(Q)) o jlv. 2.2)
Now

{Potr, Qoyld) = ({P. Q) o ¥)(9) (2.3)

is equivalent to

/M[w(E((P o jy)detyy), E((Q o jy)dety)) o jg]v

— | [EP) E@) < v o jedetly
but since this holds for all sectiogsof E it is equivalent to
(E((P o jy)detyum), E((Q o jy)det)y)) = (0(E(P), E(Q)) o jy)det)y
up to adivergenceThe last equation is equivalent to
oEp((Q o jy)detyu)EL((P o jy)detyn) = (" Ex(Q)Eu(P)] o ji)detyy
up to a divergence, otLémma 2.2
AL IS, ~ -
2 VeV @ (0 0 jIEP) o 1)
u’ ou

= (@™ o JY)(En(Q) o jW)(Eu(P) o ji)(detyr)

up to a divergence. Finally, since the last equation is true fd? ahdQ it is equivalent to

o (dety)

10V Vg

~ab g
&% o jy = (detu)o L

which is equivalent to the covariance of (Notice that if the last equality does not hold
then by some choice ¢f andQ the equations above will not hold up to a divergence.) We
have established the following:

Theorem 2.3. Lety : E — E be an automorphism of E sending fibers to fibers, and let
¥ : F — Fbe the induced mapping defineddyP) = P o v (noting thatP o v is defined

as above) wherg : I'E — T'E is given byy/(¢) = ¥ o ¢ o ¥,,*. Then¥ is canonical in

the sense that

{w(P). w(Q} =v(P, 2}

for all P, Q € Fiff wis covariant with respect tg.
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Definition. An automorphismy of Eis canonicalprovided the induced mapping : 7 —
Fis canonical (in the sense of the preceding theorem).

Example.ConsiderM = R, E = R x R?, and let

(%)
- 10

Consider the actiony, : E — E defined by(x, ul, u?) = (x, g - (ut, u?)) for some
g € SO(2). It can easily be shown that is covariant with respect t¢, and hence the
induced action is canonical. As an illustration ¢gbe the counter-clockwise rotation by
9 (so thatgu' = u? and gu? = —u?), and letP = [; P(ul)dx and Q = [ O(u?)dx
for real-valued differentiable functionB and Q. Then ¥(P) = |5 P(u?)dx, ¥(Q) =
J O(—ut)dx and{¥(P), ¥(Q)} = — [ P'(u?)Q'(—ul)dx. On the other hangP, Q} =
— Jg P'(ut) Q' (u?)dx, so that¥ ({P, Q}) = — [ P'(u?)Q'(—ul)dx.

The following will be needed in our subsequent work.
Proposition 2.4. dg((jv)*n) = (jw)*(dxn) for n € £2™°, m arbitrary.

Proof. Letn = a;d%! where each; : J°E — R.We assume that thg’s depend on the
transformed variables(7 i%). Then

dir ()" (@) = di (s 0 jY)AE 0 )
{Di(es o j)dx’ Ad(E o )

_ 3051 . 8(')2] e} w‘) 80(, . ajw?{ a Ba, . 8]1#%
- (a}.fow) o \aw ) Tae T G 09V ) o

x dx' A d@E! o ¥)

b b
(s (o) (2o
ox! oug

x AdGE o)

_ % . ooy . 3]1#?( gy N 5

B (8%f0]¢)+(aﬁ’;<ow)< rE "a“)(J )}d(10¢)
x AdGE o)

| (Gero ) + (G o0) @y )} 0 0 ) n e o)
= (Biea) o WA 0 9) A 0 1) = () (Anle))

where we assumed that% = ii% o jy andJis the Jacobian matrix of the transformation
Yy (x*) as before. O
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3. Canonical automorphisms and sh-Lie algebras

In this section we consider the structure maps of the sh-Lie algebra on the horizontal
complex{£2-9}. Throughout the remainder of the paper we assume the horizontal complex
is exact. A complete description of these maps can be fouff] or one of the references
therein; however it is useful to give a brief overview.

3.1. Overview of sh-Lie algebras

Let F be a vector space and{, /1) a homological resolution thereof, i.eX, is a
graded vector spacé, is a differential and lowers the grading by one with~ Ho(/1)
andHy(l1) = 0 fork > 0. The complex X, [1) is called the resolution space. (We ai
using the term ‘resolution’ in a categorical sense.) Consider a homological resolution of
the spaceF of local functionals as inf2]. In the field theoretic framework considered in
[2] it was shown that under certain hypothesis (see the theorem below) the Lie structure
defined by the Poisson bracket #iinduces an sh-Lie structure on the graded vector space
X; = 2" O(J®E), for 0<i <n andX, = 2%°(J*E). For completeness we give the
definition of sh-Lie algebras and include a statement of the relevant theorem.

Definition. An sh-Lie structure on a graded vector spacds a collection of linear, skew-
symmetric mapg; : ®k X, — X, of degreek — 2 that satisfy the relation

Z Z e(0)(—=1)° (1YY L(li(xoy, - - - Xo@)s - - - > Xo(m) = O,

i+ j=n+Llunsh(i,n—i)

where 1< i, j.

Notice that in this definitior(o) is the Koszul sign which depends on the permutati@s
well as on the degree of the elemerisxy, ..., x, (see for examplgL0]).

Remark. Although this may seemto generally be arather complicated structure, it simplifies
drastically in the case of field theory where, aside from the differential dg, the only
non-zero maps are and/z in degree 0.

The theorem relevant to field theory depends on the existence of a linear skew-symmetric
map?z : Xo ® Xo — Xo (in our case the the Poisson bracket will be the integral of this
mapping as we will see in detail shortly) satisfying conditions (i) and (ii) below. These
conditions are all that is needed in order that an sh-Lie structure exists.

Theorem 3.1. A skew-symmetric linear mi@: Xo ® Xg — Xo that satisfies conditions
(i) and (ii) below extends to an sh-Lie structure on the resolution spage

() la(c,b1) =b2
() 2 seunsn.1)(—1)12(l2(co(), ¢o(2)), co@) = b3

wherec, c1, ¢2, c3 are cycles and1, by, b3 are boundaries inXo.
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Subsequently we will suppress some of the notation and assume the summands are over
the appropriate shuffles with their corresponding signs
We also assume the existence of a chain homategyich satisfies-soly = 1+ 11 o s.
Using this chain homotopy one can defigin degree 0 by the compositian 75 o 1> which
we may write simply aslol» (we assume the sum over the three unshuffleg,ferwith
their corresponding signs).

3.2. The effect of a canonical automorphism on the structure maps of the sh-Lie
algebra

To apply the theorem in the last subsection, we need a candidate Yoe may define
such a mapping ofe"-? by

Io(Pv, Qv) = 0™ E4(P)Ex(Q)v = w(E(P), E(Q))v. (3.4)
Recall that for each automorphisgnwe have ()*(Pv) = (P o jyr)(detyy)v. Therefore
L) (Pv), (7¥)*(Qv)) = (j)*(2(Pv, Q) (3.5)

forall P, Q € Locg if and only if
wEp((Q o jr)detya)EL((P o jy)detyy) = [(0PEp(Q)Eq(P)) o jw](dety),

forall P, Q € Locg, which byLemma 2.2s equivalent to

ayd ayc - -
W Ra(0) o WELP) o 79)
u® ou

= (& o jY)En(Q) o j¥)(Ea(P) o jr)(detyy).

The last equation is true for alt, Q € Locg, so it is equivalent to

o™ (dety)?

. oY 0y
b aWE Vg
& o jir = (detyy)o” e ol

which in turn is equivalent to the covariancewf
Now considets in degree 0. We have
I((j9)* (Pv), () *(Qv), () (Rv)) = slTa(2((iw)*(Pv), (j¥)*(Qv)), (¥)*(Rv))]
= s[La(()* (2 Py, QV)), ()  (RV)]
= s[()* (202 P, Qv), RV))]
= s[—(jy)* (lals(Pv, Qv, Rv))]
= s[—11((j¥)*I3(Pv, Qv, Rv))]
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since in this casf = dy so it commutes with the pull-bacl(oposition 2.4 Proceeding
using the identity

—soli=1+110s

the above becomes
(1 + 110 9)[(j¥)*(Is(Pv, Qv, Rv))]
= (j¥)*(l3(Pv, Qv, Rv)) + 11 o s[(j)*(Ia(Pv, Qv, RV))].

Solz((jy)*(Pv), () (Qv), () (Rv)) = (j¥)*(ls(Pv, Qv, Rv)) up to an exact form. We
have shown:

Theorem 3.2. Lety : E — E be an automorphism of E sending fibers to fibers, and let
J¥ 1 J®E — J°E be its induced automorphism dfi°E. Then

L((y)* o () B) = (j¥)* (2(et. B)

for all o, B € 2"0(J®E) iff w is covariant with respect tg. Moreover we then have

B(GY) e G)* B, () y) = (i) 1a(e. B, y) + 11(9),

forall a, B, y € 2*9(J°E), and for some e £2"~20(J¥E).

4. Reduction of the graded vector space in field theory

LetM be a manifoldE — M a vector bundle, and* E the infinite jet bundle oE. Let
G be a Lie group acting ok via automorphisms (as iBection 2 and hence inducing an
action of G on J*E. We assume the induced actign on I'E is canonical with respect
to the Poisson bracket of local functionals for @6 G. Notice thatG acts via canonical
tranformations on the space of functionals iff for evgy,

L((re)* f1. G¥e) 2) = (o) (2 f1 f2)s

wherel, is defined on the vector spac2’°(J°E) as in the previous section (in fact

T2o(f1, f2) = 1/2[0(E(f2), E(f2)) — (E(f2), E(f1))], see alsEq. (3.9).

Definition. Given an automorphisnt of the bundleE, a differential formx € 25{(J®E)
is y-invariantiff ( j¥)*a = «. If G acts orE via automorphismg, : E — E, g € G, then
a is G-invariantiff itis v,-invariant for allg € G.

Let Q';"(JOOE) denote the space of alj-invariant forms onJ°°E which are in

2M(J®E), and let2%! (J> E) denote the space of all-invariant forms in2%!(J>E).
One also needs the following:
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Definition. Assume that acts onkE such that/*°E/G has a manifold structure and the
canonical projection map : J*E — J*°E/G is smooth. Them?’g*o(JooE/G) is the sub-
space ok-formsa € 2X(J*E/G) such thatr*a € .Q'BO(J"OE), ande*O(JOOE/G) is the
reduced graded spaad the graded space’°(J>° E) with respect tdG.

We are interested in actions that send fibers to fibers, i.e. the transformation of the inde-
pendent variables does not depend on the dependent variables, so that acting on an element
of SZ’;’O(J‘X’E) gives an element of the same space and the reductid?ﬁﬁ(J‘X’E/G)
makes sense.

In fact we will also assume that the map, representing the transformation of the
independent variables'( = y,,(x*)) is the identity for allg € G (see the proposition that
follows). This will enable us to define a differential on the reduced graded space. It will also
insure thatthe spadé{%*o(JOo E) does not collapse to zero upon reduction (due to a reduction
inthe number ofindependent variables so thatafgrm in .QZ’O(JC>o E/G)would be trivial)
which is desired so that the induced sh-Lie structure would not necessarily be trivial.

Proposition 4.1. If ¥ is the identity map, then* : 2X0(J®E/G) - 25°(J®E) is
onto.

Proof. Notice that ify, is the identity map one can choose coordingiéson J*E/G
such thatr*x’ = x,i = 1,2, ..., n (where by an abuse of notation we denotexbpoth
coordinates o and J*® E/G) are the coordinates d. Now 7*(a;dx’) = (er7 o )dx!
where|I| = k, i.e. we are assumingdx’ e S?’;*O(J‘X’E/G). Sincer is a smooth canonical
projection, it is clear that for any smoo@-invariant functionf on J*°E there exists a
smooth functionr; on J°°E/G such thatf = «a; o . The result follows. [

Corollary 4.2. If i, is the identity map, then we have an isomorphisgth:
2k0(J®E/G) — 252(IE).

_In this setting it can be shown thazjvo(J"OE/G) is a complex with a differential
dy : 2mOJ®E/G) — 2m10(J> E/G) defined by

dih = (%) {(du(T*h)).

This is well defined since glz*4) is invariant under the group action which follows
from the fact thatr*h is invariant under the group action so thaty()*(dy(7*h)) =
du((je)*(w*h)) = du(7*h). Also notice thatly o dy = 0 easily follows from ¢y o dy =

0. Sody is a well-defined differential.

Reduction hypothesisAssume that every invariangdexact form is the horizontal differ-
ential of an invariant form. This hypothesis will guarantee that the reduced graded space
with the differentialy is exact. Subsequently we will determine sufficient conditions which
will insure that this is true.

This assumption will also yield the two conditions, (i) and (ii) below, that are needed to
obtain the sh-Lie structure on the reduced graded space.

Lemma4.3. Suppose thaTij’O(JOOE) is exact. If for evergly-exact formx € .Q’g‘o(JOOE)

there existy € Q’é‘l’O(JOOE) such thax = dgy, then the reduced graded space is exact.
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Proof. Suppose thady 8 = 0, thenz*(dy B) = 0 and by the definition ofl this implies
that dy(7*B) = 0. Now exactness a2} ‘Oimplies thatr* 8 = dyy for somey, andy can
be chosen so that it is invariant by assumption singg ©, soy = =* for somer. By the
definition ofdy then Uy(7*7) = n*(dHr) so thatr*8 = n*(dHr) or

(B — dyt) =
fromwhichg — dyt = 0, and therefor@ = dy. (Observe thatr*s = § o dm = Oimplies
thats = O for § € 2%9(J®E/G) sincedr is onta) O
Remark. We have used the simplified notatia}- for 2:-°(J*E).

Corollary 4.4. Under the same hypothesis as in the preceeding lemma, the subcomplex of
G-invariant formsﬂgo(JWE), is exact.

Now we proceed to finding a map on the reduced sp2ic&(J>° E/ G) analogous to and
induced bylz on the space2!- O(J>®E). Definel, by

(2 f1. f2) = (7)o" f1, 7* f2)

wherefi, f2 € .QQFO(JOOE/ G). Notice that this is well-defined sinég(* £, 7*h) is invari-
ant under the group action by the following calculation

(o) To(m* £ 7*h) = To((j¥re)* (7 £), (jirg)*(w*h)) = Iop(* f: ),

and the maps*)~1 exists byCorollary 4.2 y
Skew-symmetry and linearity @3 follow from the skew-symmetry and linearity 6f.
Furthermord, satisfies

@ Ip(dpky. h) = dukg. A
(1) X seunsn@1)(—1202(fo1), fo2)): fo(3) = drks,

wherek; € 2/~10(J®E/G), while h, f1, fa, f3 € 270(J®E/G), and for soméy, k3 €
Q’C’—l’O(JOOE/G). Recall that we may suppress some of the notation and assume the sum-
mands are over the appropriate shuffles with their corresponding signs.

To verify (i) notice that

7*(la(dpka, b)) = Io(r* (dprky), w*h)
= Io(dy (T*k1), 7*h)
=dy Ko,

forsomek; € 21 ‘0(J>°E). But by our assumptiok» can be chosen to be invariant under
the group actlon sincegKz is, i.e.,K2 = "k for somekz € 27 10(JOOE/G) and then
dy K> = dy(n*ko) = n*(dez) by the definition ode This |mpI|es thaﬂz(del, h) =
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dprko. (Recall thatt*a = @ o dm = 0 implies thate = O for o € Qﬁ*O(J"OE/G) sincedr
is onta)
While to verify (i), notice that

7*(2(2(f1, f2), £3)) = L(lo(7* f1, 7* £2), 7 f3)
=dyKs,

where the sum is over the unshuffles (2,1), and for sdfe= Qﬁ—l’O(JOOE) and all
f1. fo, f3 € 2% 0(J>®E/G). Again K3 can be chosen to be invariant under the group ac-
tion since d1K3 is, i.e., K3 = m*k3 for someks € 21~10(J*E/G), and then g K3 =
dy(m*ks3) = n*(deg) by the definition ofdy. This |mpI|es tha’lz(lz(fl, f2), f3) = diks.

We have shown (see Lemmas 1 and Z2handTheorem 3.%

Theorem 4.5. There exists a skew-symmetric bilinear bracketHdeH) X Ho(dH) that
satisfies the Jacobi identity, where we are usHtgdH) for H"(§2} O(J®E/G), dH) This
bracket is induced by the maip

Theorem 4.6. The skew-symmetric linear maﬁ as defined above on the space
29(J® E/G) extends to an sh-Lie structure on the graded spag&(J*E/ G).

4.1. Exactness of the reduced graded space

In this section we find sufficient conditions under which our reduction hypothesis
in the last section holds. Thus we consider the questiow: i in the reduced space
Qk19(J®E/G) and dya = 0, then isa = dyp for some ? Supposedya = 0 for
a € 2K0(J®E/G), then ¢y(r*a) = 0 so thatr*a = dyy for somey e 2k~10(J>E)
since .Qj’O(JOOE) is exact. Notice that gly is invariant under the group action (since
dyy = n*a) so dyy = jy,(dny) for all g € G, or since ¢; commutes withjy; by
Proposition 2.4dyy = du(jy;y) forall g € G. So

Y = ¥y +dutg,

where 1, € 2¥-20(J*E) depends ong. Considery’ =y +dyA for some fixed
A € 2k-20(J®E) and notice that gy =dyy =n*a. Now ' =y +dyA =
J¥gy +dutg +dyA so thatjyyy =y —dyte —dyA, and hencejyy’ = jygy +
JVg(dyA) =y —dyte —duA + jyg(dmA). But if ' is invariant under the group ac-
tion then—dp A — dptg + jy§(duA) = 0 or

Ay (VA — A — 1) =0,

(recall that ¢; commutes withjyr; by Proposition 2.3so that (yz A — A — 1) is exact.

Notice that this is a necessary and sufficient condition for the exactness of the reduced

space. In this case Igt= 7.y’ and notice thair*(dHﬁ) dyy = 7*a so thatdy 8 = .
Observe that, depends oy and ony whereasA depends ory.
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We find the above criterion too general and rather complicated, and find it useful to
consider a special case. Suppose Gstcompactand letw € Q’C‘*O(Joo E) be a closed form
that is invariant under the group action. By exactnes®bP there exists & such that
dup = a. Observe that d(jyzB) = jyz(dup) = jyza =aforallg € G. So

[ autivid= [ ace=a [ de=a- i) =a

assuming thato/(G) = 1. Now let
B [ Gz

and notice that @B = J dn(jy;A)dg =, and jv(B) = Jo Wi (viB)ds =
Jo (¥, B)d(gh) = B. So we have:

Proposition 4.7. If the group G acting (canonically) on E is compact, then exgpclosed
form that is G-invariant is the horizontal differential of a G-invariant form. Consequently
2:0(J® E/G) is exact and admits an (induced) sh-Lie structure.

4.2. The existence of an sh-Lie structure on the subcomplex of G-invariant forms

In this subsection we consider the subcompleahvariant forms

o 2RO B ().

Working with the subcomplex db-invariant forms is rather interesting. We shall maintain
the same assumptions made earlier in this section, in particular the hypothésesré
4.3 Recall that throughout this section we require the mapgipgrepresenting the tran-
formation of the independent variables to be the identity.

In fact, if the base manifol is one-dimensional these assumptions are not needed for
this subcomplex to be exact. However their absence does not guarantee the existence of an
sh-Lie structure (that's obtained from the original one).

Recall that byCorollary 4.4the subcomplex of-invariant forms is exact and observe
thatlz(a, B) = L((j¥)* e, (j¥)*B) = (j¥)*la(, B) for a, B € 25°(J®E). Sol, can be re-
stricted to the subspadé’go(JOOE), and if we combine this with exactness, we notice that
conditions (i) and (ii) that guarantee the existence of the sh-Lie structure, as stated earlier in
this section, are readily established (this sh-Lie structure is just the restriction of the original
one to the subcomplex @-invariant forms). So we have:

Theorem 4.8.Under the same hypotheses ak@mma 4.3there exists an sh-Lie structure
on the subcomplex of G-invariant forrxﬁ;’o(JWE).
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Example.ConsidetM = R, E =R x R2, and let

o= (23).

Consider the action o = SO(2) on E defined byy,(x, ut, u?) = (x, g - (ut, u?)), g €
SO(2), and observe thaf0(2) is compact. As we noticed in the exampleSaction 1
w is covariant with respect t¢r, and hence the induced action is canonical forgad
G. Consider a subset of*°E defined by (®E) = J®E — {u € J®E|u = (u}, u?) =
(0,0),1=0,1,2,3,...}, Whereu(l) =ul, u% = u}, u% = u)lcx, ...etc.

Notice that at a point inA*E)’ u! andu? cannot be zero at the same tim&, and
u§ cannot be zero at the same time, and so on. We note IRAEY' /G = R x (RT) x
(RT) x St x (RT) x St x ---, whereR™ is the set of all positive real numbers (without
the 0). As an illustration let = u'dx and notice that fi/,)*a = (cos@)u’ + (sinf)u?,
whereass = (1/2)[(ut)? + (1?)?]dx is invariant under the induced action G6fand so is
Y = (1/2)[(u})? + (u?)?]dx. As for the sh-Lie structure, first notice that the resolution space
is rather simple:

0— Loc% — QL0(J¥E).
One finds that
Io(Pdx, Qdx) = (E1(P)E2(Q) — E2(P)E1(Q))dx,

while Io(Pdx, f) = 0for f € Loc% sincelpli(Pdx, f) = lo(l1(Pdx), f) + l2(Pdx, I f) =
0+ Io(Pdx, dg ) = 0 which follows fromE;(dy f) = 0, i = 1, 2. Furthei; = 0in higher
degrees. We note thafis non-zero on degree 0, but is zero on higher degrees. Let for ex-
ampleP; = uluf, P> = u'u?, andPs = (ul)z, thenfziz(Pldx, Podx, P3dx) = 4ulu)1cdx =
dr (2wt)?), so that we can choosgg(P1dx, Podx, P3dx) = —2(ul)2.

The subcomplex dB-invariant forms is exact and so the sh-Lie structure can be restricted
to it. Observe that, for exampléz(B, y) = l2((1/2)[(u")? + (?)3dx, (1/2)[(u})? +
(1?)?)dx) = (—utu?, + w?ul)dx is invariant under the induced group action Gf=
SO(2).

Remark. In [12] Kogan and Olver provide a definitive account of invariant Euler-Lagrange
equations using moving frames and other tools from differential geometry. We note that
their invariantization mapin our case will just map horizontal differentials to themselves
(i.e. in local coordinategdx’) = dx’). Consequently the invariant derivatives are the same
as the ordinary derivative®; = D; (here we are borrowing some of the notation from
[12]) whereas the twisted invariant adjoints®f turn out to beDlT = —D;. Now suppose

that 7%, ..., I" is a fundamental set of differential invariants (@ E). Let 1%, ..., I™

be coordinates oti®®E/G such thatl* o 7 = I¥, k = 1, ..., m wherex is the canonical
projection mapr : J°E — J*E/G, and letL be the corresponding Lagrangian defined
on J®E/G for some (invariant) Lagrangiah = L o = defined onJ®E. Theinvariant
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Eulerian(in [12]) is defined by

whereL indicates the Lagrangian is written in terms of thes. But this&,, in our case,
reduces to

. oL
Eall) = ;(—D)KW

A corresponding invariant Eulerianan be defined od™ E/G. To accomplish this, first
define “total derivative”D; on  JCE/G by (DyP)orw = Dk(P o ) whereP is a smooth
function onJ>*E/G. Now let 1% = D% and notice tha!“ om = Ig = DgI“. Finally,
define

Eo(L) = Z( Pyx L .
81
and observe thaﬁa(i) o = &,(L). The reader should cons{ilt2] for more details.

5. Functional invariance

In this section we consider the implications of invariance on the space of functionals.
Assume thaty is canonical, i.e.

{Poy, Qo) ={P.Q}o ¥
for all functionalsP, Q.

Definition. We say thafP is invariant undew iff Po v = P.

Notice that this holds if, and only if

f (Po jy o jg)detyyy = / (P o jo)
M M

for all ¢ € I'E, which in turn holds if ¢ o jy)detyy = P. Similarly one says thaP e
Loc% is invariant undexy iff ( P o jyr)detyry, = P. Let Fy denote the set of all functionals
P such thatP o ¢y = P. Observe that

P.QeF,={P.Q)eFy
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so Fy is a Lie subalgebra of. Let Loc%(lp) denote the subset dfoc% consisting of
P € LocY such that

= (P o jy)detyy.

We note thaLoc%(w) is a subspace dfoc%, while for automorphismg suchthatdet,, =
1, Loc%(y) is a subalgebra afoc?..

Proposition 5.1. If Pv e 2"9(J*®E) is y-invariant for an automorphisny, then so is
E(Pv).

Proof. In local coordinate&(Pv) = E,(P)(6* A v). SO

G (E(P) = GO EAPIY " )
— Eu(P)o 1) ( Wi gp 5 (deth)v)

= (Eu(P)

OV (dethan)(@” A ).
ou
Now, sincePv is y-invariant we have

Pv = (jy)*(Pv)
= ()" (P)(j¥) v
= (P o jy)(detyy)v,

and therefore® o jy)det)y, = P. Finally,

E(Pv) = E4(P)(0* Av)

= Ed((P o 90w )6 A 1)

b
(P o ju)E )
= Gy EP),

where we have usdcemma 2.2in the last calculation. O

If Gis a Lie group which acts of via canonical automorphismys,, for all g € G, then
we write

Loc%(G) = ﬂ LOC%(I/fg), Fc = ﬂ Fg-
geG geG

Clearly ¢ is a Lie sub-algebra of, and if P Loc%(G), thenE(Pv) is G-invariant.

Notice that if¢ is a section of the bundle — M then;j*¢ is a section off>* ;: J*E —
M. Sections of this type are said tols@onomicas they are induced by a sectionfof> M.
Itis easily shown that not all sections;6 are holonomic. Observe that j*°¢is a section
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of the bundler : J*°E/G — M sincen®™ = t o . Similarly we say that a sectiopof t
is holonomicif it has the formn = 7 o j*°¢ for some sectiorf>¢ of 7°. Let I" denote
the set of all holonomic sections of Note thatl™ is not a linear space ov& sincern is
not linear. Indeed* E/ G is generally not a vector bundle.

Definition. We say thaf? is areduced local functionaf it is a mapping from the sef’ of
holonomic sections of the bundte J*°E/G — M into R such that

GORY INGY

for some smooth mapping : JYE/G — R and for everyy € I'. We denote the set of all
reduced local functionals h.

In this definition, when we say tha@t : J°E/G — R is smooth we mean thadt o  is
in Loc%.
Proposition 5.2. There is a bijectiong from F onto F¢. The mappingg is defined as
follows: if P is defined by

P = [ (P
M
for some smooth mappin®, thenE(P) = P is defined by

Plg) = /M(j%)*(P)v

whereP = Po .
The proof of the proposition is straightforward and is omitted.

Remark. It follows from the proposition that the s@tof reduced local functionals inherits
a Lie-structure from that off. In the sequel it is identified wittF.
Notice that byProposition 5.1he complex

d d dy ,_1 00 E
Q00 QL0 K on-10H on05 onl ...
induces a subcomplex

d d _1.0d E
e R S AR

This subcomplex is exact up to the temj;,_l’o (and including it, i.e.Hf,j‘l =0), if

we assume thaT?j.‘~° is itself exact and that every exagtinvariant form is the horizontal
differential of somey-invariant form. Similarly, the subcomplex

0,0dy ~1,00dx dy ~n—1,008 ~n0E n 1
Q5 =25 = >R TR LG >

is exact up to the term?’é_l’0 (under the same assumptions).



386 S. Al-Ashhab, R. Fulp / Journal of Geometry and Physics 53 (2005) 365-391
6. An example: a Poisson sigma model

A number of author§6,9,16]have investigated a class of physical theories called Pois-
son sigma models. These models focus on fields which are defined on a two-dimensional
manifold X' with range in a Poisson manifoM. These models seem to have first arisen in
various theories of two-dimensional gravity but have been applied to areas such as topolog-
ical field theory and in the reformulation of Kontsevich’s work on deformation quantization
[6]. We consider an application of our results to the version of the Poisson sigma model
presented in the work of Iked8] but we utilize the notation d].

Assume thaV is a finite-dimensional vector space, say of dimen$icand with basis
(T4}, and let{T4} denote the basis of the spak& dual toV. We assume the existence of
a Poisson tensdlV on V*. ThusWis a bivector field

wW=Ww 9 A 0
= AR\ G, " o7

where, foreaci, T, isidentified as a coordinate mappifg : V* — R andVisidentified
with V**, The fact thaWWis Poisson means that it is a tensor and{tig g} are functions
on V* (assumed to be polynomials in the coordindfEsg} in the present model) such that

ow oW ow
BC | Wep oA Ly AB

w
APToTS aTp T

=0

andWyp = —Wpga. Now V* is a Poisson manifold with

af og
A =W _—
tr el AB 0Ty 0T

for smooth functions, g defined onV*.

Observe that the Poisson fialdis not dependent on the basis used to represent it. If the
components¥ 4z of W relative to a basi$74} of V satisfy the Poisson conditions given
above then the componerits, z of Wrelative to any other bas{gz} of V will also satisfy
these same conditions. Notice thejip = {T4, T} and that if{T, } is a different basis and
{W4p} are the components &Y relative to it thenW g = {T4, T} as well.

The fields of Ikeda’s model are ordered paifs k) wherey is a mapping from the two-

dimensional manifold into V* andhis a mapping fron® into 7* X ® V. In components
Y(x) = Ya@TA, h(x) = b (x)(dx" @ Ta)

where{x*} are coordinates ox’. One form of Ikeda’s Lagrangian for two-dimensional
gravity is

1
L =¢v [hﬁkaﬁA — EWABth§i| ,
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wheree is the skew-symmetric Levi-Civita tensor dhsuch that®! = 1 and
DyWa = dya + Waghb.

Itis ourintentto show how some of our work relates to Ikeda’s model. To cast this modelin
our formalism leE denote the vector bundle ovErwith total spaceE = V* @ [T* X ® V]
and with the obvious projection & onto X'. The fields {, &) are sections of this bundle.
First we show how to define a Poisson bracket on the relevant space of local functionals.
To accomplish this, we want to construct a mappings inSection 2.1in such a manner
that the Jacobi condition is satisfied.
For this purpose we find it convenient to introduce a positive definite meticV with
its induced metrig.* on V*. Moreover we choosgl'4} to be an orthonormal basis relative
to 1 and we defing7 2} by T8(v) = u(v, Tg) for eachB and for allv € V. It follows that
{jA} is au*-orthonormal basis of * and that the basig“} is dual to{7}. Define a tensor
W onV by

~ d d
W — WAB - R
<8TA A aTB)

whereW48 = pAC BDWwep andu?? = w*(TP, T9) for 1 < P, 0 < N. ThusW is the
tensor orV induced byw and the metrig..

We reformulate this data in terms of the jet bundld€eotn particular the tensors, w
induce a bilinear mapping on the jet bundle which is used to define a Lie structure on the
space of functionals. Local coordinatesbmay be denotedk(*, u 4, wff) and those on the

jet bundleJ*°E by (x*, u4,, wﬁJ). Thus if (4, k) is a section oE we have

(W 1)) = x(p).  ual(. B)(P)) = ¥a(p)

and

wh((Y. h)(p)) = hy,.

Clearly, there is a corresponding splitting of the jet coordinates. It follows that in local
coordinates each local functi®on J°° E is a function of £, u 4 ;, wﬁj). Now the{W 4}

are functions of the coordinat¢%,} onV and these coordinates are denoted} on the
bundleE. Consequently we can regard &, 3} as being functions on the jet bundie’ £
which depend polynomially on the coordinaties } and are in fact independent of the
coordinatesc”, u 4 1, wﬁ,l for |1] > 1. The functiornw is required to be a mapping from

201 x 241 into Locg. Observe that there are two types of contact fosme)% on J>E,

those which arise from the coordinatgs,} and those which arise fror{nuff}. Since each
fiber of E is a direct sum of two vector spaces the matrix of components isfa block
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diagonal matrix with two blocks defined by

wag = Wap and a)ﬁf = SMVWAB.

Heres,,, is the usual Kronecker delta symbol. In the first block we have written the indices
of w® as lower indices as they represent components relative to a basis of the Wuld of
the second block it is appropriate to write the componesfts®)-(*-5) aswﬁ,’f for similar

reasons. Notice that the matrix ofis skew-symmetric and

The other components af satisfy a similar condition as they too are determined by the
{Wag}. It follows from this fact and Eq. (7.11) ¢15] that the bracket of local functionals
defined on sections d& by

{P, Q)(¢) = /2 [0™E4(P)Ex(Q)] o (j¥¢)v

satisfies the Jacobi identity (see the discussiddeation 2.
Ikeda shows that the Euler operators for the Lagrangismthis model are given by

EA(L) = e*'RA

3% EZ(L) =€e""Dya
where

IWpe
0T 4

A A A By, C
RA, = 9uhid — d,hf + hEnS.

This suggests that for every local functiBrwe should define

EA(P) = (~D); (aa—f,) Eg(P)=(—D)J( op )

B
BwM’J

Consequently, the Poisson bracket assumes the following form:

(P. Q)(y h) = /X [wasEA(PEP(O)] o (9 h)v

+ /2 [/ BEL (PYEY(Q)] o (¥ h)v.

Now we characterize the automorphismskothat induce canonical transformations,
relative to the Poisson bracket, on the space of functiafhaRecall that inSection 2.2
we have referred to such automorphisms as canonical automorphisms. Suppdsks that
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linear automorphism of, i.e., assume that there are matriéess which are functions on
X such that

w([T4 @ (dv* ® Tp)]) = (RETC) @ (dx"* ® (SETp)).

We determine conditions which insure tilats a canonical automorphism Bf According
to Lemma 2.1of Section 2.1such an automorphism will be canonical iff its components
satisfy condition (ii) of the Lemma.

Observe thaty = us o ¥ = RSuc, A =whoWw = Spwh and

W4 B Bllflf Ay
_— = As _B = SB(S[L'
81/!3 Bwv

Consequently, if the matrices satisfy the conditions

V‘_/AB = WCDRSRD, wAB — WCDSéSg
vl/hereW_/A p are the components of the tensbirelative to a new basig, = Mﬁ Tc and
T4 = (M~ Y4 TP, then

iap = (0, 08) = Wap = WepRSRE = w(0c, 0p)—= —

where, we have dropped the volume forrfrom the definition of the components of as
they were defined iection 2.1for simplicity. Similarly, we must have

. — WA guB
~AB _ A 3By _ AB _ y,CD T 1 v
oy = o0,,0)) =8,W" =W _awf Jup A

which is the same as

IS

A B

A _ 000 0,
v AP C D’
dwy dwy

Notice that these computations will be consistent if we requireRhatM andS = M -1
sinceM is the matrix transforming the badig, } to {T4}, and since we require th¥f and
W be tensors. Moreover we must also have Méie orthogonal if we want the transformed
basis to remaip-orthonormal. These remarks give us the conditions required in order that
a linear automorphism be canonical.

If Gis aLie group andv : G — O(n) is arepresentatiorof G by orthogonal matrices
then there is a representati@rof G via canonical automorphisms 8f= V* @ (T* X ® V)
defined by

()T & (dx"* ® Tp)]) = (M(g)2TC) ® (dx* @ ((M(g) 15 Tp)).
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The fact thatd : G — Aut(E) is agroup homomorphisiis a consequence of the fact that
M defines a linear left action @ onV via

g+ Ta=[M(g) 15Ts
with a corresponding linear left action 6fon V* defined by
g T = M(g)3T".

The following theorem is a consequence of these remarks:

Theorem 6.1. For each orthogonak x n matrix M there is a canonical gauge automor-
phismw,, of the bundleV* @ (T*X ® V) — X which is linear on fibers of the bundle
and which transforms the basig4 & (dx* ® T3)} via

Wy ([T & (d** ® Tp)]) = (METC) @ (de* ® (M~ Tp)).

Moreover, if M : G — O(n) is a representation of a Lie group G by orthogonak n
matrices, then the mapping : G — Aut(V* @ (T* X @ V)) defined byp(g) = (g for
g € G, isarepresentation of G by canonical automorphismgo (7* X ® V). It follows
that the space of local functionals defined on sections of the bidie (7T* Y @ V) — ¥
admits a reduction as does the comﬂl@f*o[ﬁ’o(v* (T XYeV))].k=0,12,...,n}.

Remark. It is not difficult to show that Ikeda’s Lagrangian given above is invariant under
the action of the Lie grouf® defined inTheorem 6.1
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